Dance performance traditionally follows a unidirectional relationship where movement responds to music. While AI has advanced in various creative domains, its application in dance has primarily focused on generating choreography from musical input. We present a system that enables dancers to dynamically shape musical environments through their movements. Our multi-modal architecture creates a coherent musical composition by intelligently combining pre-recorded musical clips in response to dance movements, establishing a bidirectional creative partnership where dancers function as both performers and composers. Through correlation analysis of performance data, we demonstrate emergent communication patterns between movement qualities and audio features. This approach reconceptualizes the role of AI in performing arts as a responsive collaborator that expands possibilities for both professional dance performance and improvisational artistic expression across broader populations.