This study investigates fraud detection in ride hailing platforms through Graph Neural Networks (GNNs),focusing on the effectiveness of various models. By analyzing prevalent fraudulent activities, the research highlights and compares the existing work related to fraud detection which can be useful when addressing fraudulent incidents within the online ride hailing platforms. Also, the paper highlights addressing class imbalance and fraudulent camouflage. It also outlines a structured overview of GNN architectures and methodologies applied to anomaly detection, identifying significant methodological progress and gaps. The paper calls for further exploration into real-world applicability and technical improvements to enhance fraud detection strategies in the rapidly evolving ride-hailing industry.
Graph anomaly detection technology has broad applications in financial fraud and risk control. However, existing graph anomaly detection methods often face significant challenges when dealing with complex and variable abnormal patterns, as anomalous nodes are often disguised and mixed with normal nodes, leading to the coexistence of homophily and heterophily in the graph domain. Recent spectral graph neural networks have made notable progress in addressing this issue; however, current techniques typically employ fixed, globally shared filters. This 'one-size-fits-all' approach can easily cause over-smoothing, erasing critical high-frequency signals needed for fraud detection, and lacks adaptive capabilities for different graph instances. To solve this problem, we propose a Multi-Head Spectral-Adaptive Graph Neural Network (MHSA-GNN). The core innovation is the design of a lightweight hypernetwork that, conditioned on a 'spectral fingerprint' containing structural statistics and Rayleigh quotient features, dynamically generates Chebyshev filter parameters tailored to each instance. This enables a customized filtering strategy for each node and its local subgraph. Additionally, to prevent mode collapse in the multi-head mechanism, we introduce a novel dual regularization strategy that combines teacher-student contrastive learning (TSC) to ensure representation accuracy and Barlow Twins diversity loss (BTD) to enforce orthogonality among heads. Extensive experiments on four real-world datasets demonstrate that our method effectively preserves high-frequency abnormal signals and significantly outperforms existing state-of-the-art methods, especially showing excellent robustness on highly heterogeneous datasets.
Spatio-temporal graph neural networks (ST-GNNs) have achieved notable success in structured domains such as road traffic and public transportation, where spatial entities can be naturally represented as fixed nodes. In contrast, many real-world systems including maritime traffic lack such fixed anchors, making the construction of spatio-temporal graphs a fundamental challenge. Anomaly detection in these non-grid environments is particularly difficult due to the absence of canonical reference points, the sparsity and irregularity of trajectories, and the fact that anomalies may manifest at multiple granularities. In this work, we introduce a novel benchmark dataset for anomaly detection in the maritime domain, extending the Open Maritime Traffic Analysis Dataset (OMTAD) into a benchmark tailored for graph-based anomaly detection. Our dataset enables systematic evaluation across three different granularities: node-level, edge-level, and graph-level anomalies. We plan to employ two specialized LLM-based agents: \emph{Trajectory Synthesizer} and \emph{Anomaly Injector} to construct richer interaction contexts and generate semantically meaningful anomalies. We expect this benchmark to promote reproducibility and to foster methodological advances in anomaly detection for non-grid spatio-temporal systems.
Large language model (LLM)-based multi-agent systems (MAS) have shown strong capabilities in solving complex tasks. As MAS become increasingly autonomous in various safety-critical tasks, detecting malicious agents has become a critical security concern. Although existing graph anomaly detection (GAD)-based defenses can identify anomalous agents, they mainly rely on coarse sentence-level information and overlook fine-grained lexical cues, leading to suboptimal performance. Moreover, the lack of interpretability in these methods limits their reliability and real-world applicability. To address these limitations, we propose XG-Guard, an explainable and fine-grained safeguarding framework for detecting malicious agents in MAS. To incorporate both coarse and fine-grained textual information for anomalous agent identification, we utilize a bi-level agent encoder to jointly model the sentence- and token-level representations of each agent. A theme-based anomaly detector further captures the evolving discussion focus in MAS dialogues, while a bi-level score fusion mechanism quantifies token-level contributions for explanation. Extensive experiments across diverse MAS topologies and attack scenarios demonstrate robust detection performance and strong interpretability of XG-Guard.
This survey reviews hyperbolic graph embedding models, and evaluate them on anomaly detection, highlighting their advantages over Euclidean methods in capturing complex structures. Evaluating models like \textit{HGCAE}, \textit{\(\mathcal{P}\)-VAE}, and \textit{HGCN} demonstrates high performance, with \textit{\(\mathcal{P}\)-VAE} achieving an F1-score of 94\% on the \textit{Elliptic} dataset and \textit{HGCAE} scoring 80\% on \textit{Cora}. In contrast, Euclidean methods like \textit{DOMINANT} and \textit{GraphSage} struggle with complex data. The study emphasizes the potential of hyperbolic spaces for improving anomaly detection, and provides an open-source library to foster further research in this field.
This paper proposes a structure-aware driven scheduling graph modeling method to improve the accuracy and representation capability of anomaly identification in scheduling behaviors of complex systems. The method first designs a structure-guided scheduling graph construction mechanism that integrates task execution stages, resource node states, and scheduling path information to build dynamically evolving scheduling behavior graphs, enhancing the model's ability to capture global scheduling relationships. On this basis, a multi-scale graph semantic aggregation module is introduced to achieve semantic consistency modeling of scheduling features through local adjacency semantic integration and global topology alignment, thereby strengthening the model's capability to capture abnormal features in complex scenarios such as multi-task concurrency, resource competition, and stage transitions. Experiments are conducted on a real scheduling dataset with multiple scheduling disturbance paths set to simulate different types of anomalies, including structural shifts, resource changes, and task delays. The proposed model demonstrates significant performance advantages across multiple metrics, showing a sensitive response to structural disturbances and semantic shifts. Further visualization analysis reveals that, under the combined effect of structure guidance and semantic aggregation, the scheduling behavior graph exhibits stronger anomaly separability and pattern representation, validating the effectiveness and adaptability of the method in scheduling anomaly detection tasks.
Big Data has become central to modern applications in finance, insurance, and cybersecurity, enabling machine learning systems to perform large-scale risk assessments and fraud detection. However, the increasing dependence on automated analytics introduces important concerns about transparency, regulatory compliance, and trust. This paper examines how explainable artificial intelligence (XAI) can be integrated into Big Data analytics pipelines for fraud detection and risk management. We review key Big Data characteristics and survey major analytical tools, including distributed storage systems, streaming platforms, and advanced fraud detection models such as anomaly detectors, graph-based approaches, and ensemble classifiers. We also present a structured review of widely used XAI methods, including LIME, SHAP, counterfactual explanations, and attention mechanisms, and analyze their strengths and limitations when deployed at scale. Based on these findings, we identify key research gaps related to scalability, real-time processing, and explainability for graph and temporal models. To address these challenges, we outline a conceptual framework that integrates scalable Big Data infrastructure with context-aware explanation mechanisms and human feedback. The paper concludes with open research directions in scalable XAI, privacy-aware explanations, and standardized evaluation methods for explainable fraud detection systems.
Multivariate time series anomaly detection (MTSAD) aims to accurately identify and localize complex abnormal patterns in the large-scale industrial control systems. While existing approaches excel in recognizing the distinct patterns under the low-dimensional scenarios, they often fail to robustly capture long-range spatiotemporal dependencies when learning representations from the high-dimensional noisy time series. To address these limitations, we propose DARTs, a robust long short-term dual-path framework with window-aware spatiotemporal soft fusion mechanism, which can be primarily decomposed into three complementary components. Specifically, in the short-term path, we introduce a Multi-View Sparse Graph Learner and a Diffusion Multi-Relation Graph Unit that collaborate to adaptively capture hierarchical discriminative short-term spatiotemporal patterns in the high-noise time series. While in the long-term path, we design a Multi-Scale Spatiotemporal Graph Constructor to model salient long-term dynamics within the high-dimensional representation space. Finally, a window-aware spatiotemporal soft-fusion mechanism is introduced to filter the residual noise while seamlessly integrating anomalous patterns. Extensive qualitative and quantitative experimental results across mainstream datasets demonstrate the superiority and robustness of our proposed DARTs. A series of ablation studies are also conducted to explore the crucial design factors of our proposed components. Our code and model will be made publicly open soon.
Ensuring the authenticity of video content remains challenging as DeepFake generation becomes increasingly realistic and robust against detection. Most existing detectors implicitly assume temporally consistent and clean facial sequences, an assumption that rarely holds in real-world scenarios where compression artifacts, occlusions, and adversarial attacks destabilize face detection and often lead to invalid or misdetected faces. To address these challenges, we propose a Laplacian-Regularized Graph Convolutional Network (LR-GCN) that robustly detects DeepFakes from noisy or unordered face sequences, while being trained only on clean facial data. Our method constructs an Order-Free Temporal Graph Embedding (OF-TGE) that organizes frame-wise CNN features into an adaptive sparse graph based on semantic affinities. Unlike traditional methods constrained by strict temporal continuity, OF-TGE captures intrinsic feature consistency across frames, making it resilient to shuffled, missing, or heavily corrupted inputs. We further impose a dual-level sparsity mechanism on both graph structure and node features to suppress the influence of invalid faces. Crucially, we introduce an explicit Graph Laplacian Spectral Prior that acts as a high-pass operator in the graph spectral domain, highlighting structural anomalies and forgery artifacts, which are then consolidated by a low-pass GCN aggregation. This sequential design effectively realizes a task-driven spectral band-pass mechanism that suppresses background information and random noise while preserving manipulation cues. Extensive experiments on FF++, Celeb-DFv2, and DFDC demonstrate that LR-GCN achieves state-of-the-art performance and significantly improved robustness under severe global and local disruptions, including missing faces, occlusions, and adversarially perturbed face detections.
Unsupervised graph anomaly detection (GAD) has received increasing attention in recent years, which aims to identify data anomalous patterns utilizing only unlabeled node information from graph-structured data. However, prevailing unsupervised GAD methods typically presuppose complete node attributes and structure information, a condition hardly satisfied in real-world scenarios owing to privacy, collection errors or dynamic node arrivals. Existing standard imputation schemes risk "repairing" rare anomalous nodes so that they appear normal, thereby introducing imputation bias into the detection process. In addition, when both node attributes and edges are missing simultaneously, estimation errors in one view can contaminate the other, causing cross-view interference that further undermines the detection performance. To overcome these challenges, we propose M$^2$V-UGAD, a multiple missing values-resistant unsupervised GAD framework on incomplete graphs. Specifically, a dual-pathway encoder is first proposed to independently reconstruct missing node attributes and graph structure, thereby preventing errors in one view from propagating to the other. The two pathways are then fused and regularized in a joint latent space so that normals occupy a compact inner manifold while anomalies reside on an outer shell. Lastly, to mitigate imputation bias, we sample latent codes just outside the normal region and decode them into realistic node features and subgraphs, providing hard negative examples that sharpen the decision boundary. Experiments on seven public benchmarks demonstrate that M$^2$V-UGAD consistently outperforms existing unsupervised GAD methods across varying missing rates.