Abstract:Inaccuracies in existing or generated clinical text may lead to serious adverse consequences, especially if it is a misdiagnosis or incorrect treatment suggestion. With Large Language Models (LLMs) increasingly being used across diverse healthcare applications, comprehensive evaluation through dedicated benchmarks is crucial. However, such datasets remain scarce, especially across diverse languages and contexts. In this paper, we introduce MedErrBench, the first multilingual benchmark for error detection, localization, and correction, developed under the guidance of experienced clinicians. Based on an expanded taxonomy of ten common error types, MedErrBench covers English, Arabic and Chinese, with natural clinical cases annotated and reviewed by domain experts. We assessed the performance of a range of general-purpose, language-specific, and medical-domain language models across all three tasks. Our results reveal notable performance gaps, particularly in non-English settings, highlighting the need for clinically grounded, language-aware systems. By making MedErrBench and our evaluation protocols publicly-available, we aim to advance multilingual clinical NLP to promote safer and more equitable AI-based healthcare globally. The dataset is available in the supplementary material. An anonymized version of the dataset is available at: https://github.com/congboma/MedErrBench.
Abstract:Advanced Persistent Threats (APTs) are sophisticated, long-term cyberattacks that are difficult to detect because they operate stealthily and often blend into normal system behavior. This paper presents a neuro-symbolic anomaly detection framework that combines a Graph Autoencoder (GAE) with rare pattern mining to identify APT-like activities in system-level provenance data. Our approach first constructs a process behavioral graph using k-Nearest Neighbors based on feature similarity, then learns normal relational structure using a Graph Autoencoder. Anomaly candidates are identified through deviations between observed and reconstructed graph structure. To further improve detection, we integrate an rare pattern mining module that discovers infrequent behavioral co-occurrences and uses them to boost anomaly scores for processes exhibiting rare signatures. We evaluate the proposed method on the DARPA Transparent Computing datasets and show that rare-pattern boosting yields substantial gains in anomaly ranking quality over the baseline GAE. Compared with existing unsupervised approaches on the same benchmark, our single unified model consistently outperforms individual context-based detectors and achieves performance competitive with ensemble aggregation methods that require multiple separate detectors. These results highlight the value of coupling graph-based representation learning with classical pattern mining to improve both effectiveness and interpretability in provenance-based security anomaly detection.