What is Traffic Prediction? Traffic prediction is the process of forecasting traffic conditions, such as congestion and travel times, using historical traffic data.
Papers and Code
Sep 18, 2025
Abstract:We present a novel framework that leverages time series clustering to improve internet traffic matrix (TM) prediction using deep learning (DL) models. Traffic flows within a TM often exhibit diverse temporal behaviors, which can hinder prediction accuracy when training a single model across all flows. To address this, we propose two clustering strategies, source clustering and histogram clustering, that group flows with similar temporal patterns prior to model training. Clustering creates more homogeneous data subsets, enabling models to capture underlying patterns more effectively and generalize better than global prediction approaches that fit a single model to the entire TM. Compared to existing TM prediction methods, our method reduces RMSE by up to 92\% for Abilene and 75\% for G\'EANT. In routing scenarios, our clustered predictions also reduce maximum link utilization (MLU) bias by 18\% and 21\%, respectively, demonstrating the practical benefits of clustering when TMs are used for network optimization.
* Accepted to ICMLA 2025
Via

Sep 18, 2025
Abstract:While simulators exist for vehicular IoT nodes communicating with the Cloud through Edge nodes in a fully-simulated osmotic architecture, they often lack support for dynamic agent planning and optimisation to minimise vehicular battery consumption while ensuring fair communication times. Addressing these challenges requires extending current simulator architectures with AI algorithms for both traffic prediction and dynamic agent planning. This paper presents an extension of SimulatorOrchestrator (SO) to meet these requirements. Preliminary results over a realistic urban dataset show that utilising vehicular planning algorithms can lead to improved battery and QoS performance compared with traditional shortest path algorithms. The additional inclusion of desirability areas enabled more ambulances to be routed to their target destinations while utilising less energy to do so, compared to traditional and weighted algorithms without desirability considerations.
* 16 pages, 2 figures, 2 tables, 2 algorithms
Via

Sep 18, 2025
Abstract:While trajectory prediction plays a critical role in enabling safe and effective path-planning in automated vehicles, standardized practices for evaluating such models remain underdeveloped. Recent efforts have aimed to unify dataset formats and model interfaces for easier comparisons, yet existing frameworks often fall short in supporting heterogeneous traffic scenarios, joint prediction models, or user documentation. In this work, we introduce STEP -- a new benchmarking framework that addresses these limitations by providing a unified interface for multiple datasets, enforcing consistent training and evaluation conditions, and supporting a wide range of prediction models. We demonstrate the capabilities of STEP in a number of experiments which reveal 1) the limitations of widely-used testing procedures, 2) the importance of joint modeling of agents for better predictions of interactions, and 3) the vulnerability of current state-of-the-art models against both distribution shifts and targeted attacks by adversarial agents. With STEP, we aim to shift the focus from the ``leaderboard'' approach to deeper insights about model behavior and generalization in complex multi-agent settings.
Via

Sep 18, 2025
Abstract:Time series forecasting is crucial in various fields such as economics, traffic, and AIOps. However, in real-world applications, focusing solely on the endogenous variables (i.e., target variables), is often insufficient to ensure accurate predictions. Considering exogenous variables (i.e., covariates) provides additional predictive information, thereby improving forecasting accuracy. However, existing methods for time series forecasting with exogenous variables (TSF-X) have the following shortcomings: 1) they do not leverage future exogenous variables, 2) they fail to account for the causal relationships between endogenous and exogenous variables. As a result, their performance is suboptimal. In this study, to better leverage exogenous variables, especially future exogenous variable, we propose a general framework DAG, which utilizes dual causal network along both the temporal and channel dimensions for time series forecasting with exogenous variables. Specifically, we first introduce the Temporal Causal Module, which includes a causal discovery module to capture how historical exogenous variables affect future exogenous variables. Following this, we construct a causal injection module that incorporates the discovered causal relationships into the process of forecasting future endogenous variables based on historical endogenous variables. Next, we propose the Channel Causal Module, which follows a similar design principle. It features a causal discovery module models how historical exogenous variables influence historical endogenous variables, and a causal injection module incorporates the discovered relationships to enhance the prediction of future endogenous variables based on future exogenous variables.
Via

Sep 17, 2025
Abstract:Generative search engines (GEs) leverage large language models (LLMs) to deliver AI-generated summaries with website citations, establishing novel traffic acquisition channels while fundamentally altering the search engine optimization landscape. To investigate the distinctive characteristics of GEs, we collect data through interactions with Google's generative and conventional search platforms, compiling a dataset of approximately ten thousand websites across both channels. Our empirical analysis reveals that GEs exhibit preferences for citing content characterized by significantly higher predictability for underlying LLMs and greater semantic similarity among selected sources. Through controlled experiments utilizing retrieval augmented generation (RAG) APIs, we demonstrate that these citation preferences emerge from intrinsic LLM tendencies to favor content aligned with their generative expression patterns. Motivated by applications of LLMs to optimize website content, we conduct additional experimentation to explore how LLM-based content polishing by website proprietors alters AI summaries, finding that such polishing paradoxically enhances information diversity within AI summaries. Finally, to assess the user-end impact of LLM-induced information increases, we design a generative search engine and recruit Prolific participants to conduct a randomized controlled experiment involving an information-seeking and writing task. We find that higher-educated users exhibit minimal changes in their final outputs' information diversity but demonstrate significantly reduced task completion time when original sites undergo polishing. Conversely, lower-educated users primarily benefit through enhanced information density in their task outputs while maintaining similar completion times across experimental groups.
* 59 pages, 6 figures, 20 tables
Via

Sep 17, 2025
Abstract:Recent advances in end-to-end autonomous driving leverage multi-view images to construct BEV representations for motion planning. In motion planning, autonomous vehicles need considering both hard constraints imposed by geometrically occupied obstacles (e.g., vehicles, pedestrians) and soft, rule-based semantics with no explicit geometry (e.g., lane boundaries, traffic priors). However, existing end-to-end frameworks typically rely on BEV features learned in an implicit manner, lacking explicit modeling of risk and guidance priors for safe and interpretable planning. To address this, we propose FlowDrive, a novel framework that introduces physically interpretable energy-based flow fields-including risk potential and lane attraction fields-to encode semantic priors and safety cues into the BEV space. These flow-aware features enable adaptive refinement of anchor trajectories and serve as interpretable guidance for trajectory generation. Moreover, FlowDrive decouples motion intent prediction from trajectory denoising via a conditional diffusion planner with feature-level gating, alleviating task interference and enhancing multimodal diversity. Experiments on the NAVSIM v2 benchmark demonstrate that FlowDrive achieves state-of-the-art performance with an EPDMS of 86.3, surpassing prior baselines in both safety and planning quality. The project is available at https://astrixdrive.github.io/FlowDrive.github.io/.
Via

Sep 16, 2025
Abstract:Autonomous driving in dense, dynamic environments requires decision-making systems that can exploit both spatial structure and long-horizon temporal dependencies while remaining robust to uncertainty. This work presents a novel framework that integrates multi-channel bird's-eye-view occupancy grids with transformer-based sequence modeling for tactical driving in complex roundabout scenarios. To address the imbalance between frequent low-risk states and rare safety-critical decisions, we propose the Uncertainty-Weighted Decision Transformer (UWDT). UWDT employs a frozen teacher transformer to estimate per-token predictive entropy, which is then used as a weight in the student model's loss function. This mechanism amplifies learning from uncertain, high-impact states while maintaining stability across common low-risk transitions. Experiments in a roundabout simulator, across varying traffic densities, show that UWDT consistently outperforms other baselines in terms of reward, collision rate, and behavioral stability. The results demonstrate that uncertainty-aware, spatial-temporal transformers can deliver safer and more efficient decision-making for autonomous driving in complex traffic environments.
Via

Sep 09, 2025
Abstract:Predicting injuries and fatalities in traffic crashes plays a critical role in enhancing road safety, improving emergency response, and guiding public health interventions. This study investigates the added value of unstructured crash narratives (written by police officers at the scene) when combined with structured crash data to predict injury severity. Two widely used Natural Language Processing (NLP) techniques, Term Frequency-Inverse Document Frequency (TF-IDF) and Word2Vec, were employed to extract semantic meaning from the narratives, and their effectiveness was compared. To address the challenge of class imbalance, a K-Nearest Neighbors-based oversampling method was applied to the training data prior to modeling. The dataset consists of crash records from Kentucky spanning 2019 to 2023. To account for roadway heterogeneity, three road classification schemes were used: (1) eight detailed functional classes (e.g., Urban Two-Lane, Rural Interstate, Urban Multilane Divided), (2) four broader paired categories (e.g., Urban vs. Rural, Freeway vs. Non-Freeway), and (3) a unified dataset without classification. A total of 102 machine learning models were developed by combining structured features and narrative-based features using the two NLP techniques alongside three ensemble algorithms: XGBoost, Random Forest, and AdaBoost. Results demonstrate that models incorporating narrative data consistently outperform those relying solely on structured data. Among all combinations, TF-IDF coupled with XGBoost yielded the most accurate predictions in most subgroups. The findings highlight the power of integrating textual and structured crash information to enhance person-level injury prediction. This work offers a practical and adaptable framework for transportation safety professionals to improve crash severity modeling, guide policy decisions, and design more effective countermeasures.
Via

Sep 04, 2025
Abstract:Traffic accidents can be studied to mitigate the risk of further events. Recent advances in machine learning have provided an alternative way to study data associated with traffic accidents. New models achieve good generalization and high predictive power over imbalanced data. In this research, we study neural network-based models on data related to traffic accidents. We begin analyzing relative feature colinearity and unsupervised dimensionality reduction through autoencoders, followed by a dense network. The features are related to traffic accident data and the target is to classify accident severity. Our experiments show cross-validated results of up to 92% accuracy when classifying accident severity using the proposed deep neural network.
* The 17th International Conference on Data Science (ICDATA 2021)
Via

Sep 05, 2025
Abstract:Time series forecasting plays a critical role in decision-making processes across diverse fields including meteorology, traffic, electricity, economics, finance, and so on. Especially, predicting returns on financial instruments is a challenging problem. Some researchers have proposed time series foundation models applicable to various forecasting tasks. Simultaneously, based on the recognition that real-world time series exhibit chaotic properties, methods have been developed to artificially generate synthetic chaotic time series, construct diverse datasets and train models. In this study, we propose a methodology for modeling financial time series by generating artificial chaotic time series and applying resampling techniques to simulate financial time series data, which we then use as training samples. Increasing the resampling interval to extend predictive horizons, we conducted large-scale pre-training using 10 billion training samples for each case. We subsequently created test datasets for multiple timeframes using actual Bitcoin trade data and performed zero-shot prediction without re-training the pre-trained model. The results of evaluating the profitability of a simple trading strategy based on these predictions demonstrated significant performance improvements over autocorrelation models. During the large-scale pre-training process, we observed a scaling law-like phenomenon that we can achieve predictive performance at a certain level with extended predictive horizons for chaotic time series by increasing the number of training samples exponentially. If this scaling law proves robust and holds true across various chaotic models, it suggests the potential to predict near-future events by investing substantial computational resources. Future research should focus on further large-scale training and verifying the applicability of this scaling law to diverse chaotic models.
* Patent pending
Via
