Topic modeling has emerged as a dominant method for exploring large document collections. Recent approaches to topic modeling use large contextualized language models and variational autoencoders. In this paper, we propose a negative sampling mechanism for a contextualized topic model to improve the quality of the generated topics. In particular, during model training, we perturb the generated document-topic vector and use a triplet loss to encourage the document reconstructed from the correct document-topic vector to be similar to the input document and dissimilar to the document reconstructed from the perturbed vector. Experiments for different topic counts on three publicly available benchmark datasets show that in most cases, our approach leads to an increase in topic coherence over that of the baselines. Our model also achieves very high topic diversity.
Topic modeling is a dominant method for exploring document collections on the web and in digital libraries. Recent approaches to topic modeling use pretrained contextualized language models and variational autoencoders. However, large neural topic models have a considerable memory footprint. In this paper, we propose a knowledge distillation framework to compress a contextualized topic model without loss in topic quality. In particular, the proposed distillation objective is to minimize the cross-entropy of the soft labels produced by the teacher and the student models, as well as to minimize the squared 2-Wasserstein distance between the latent distributions learned by the two models. Experiments on two publicly available datasets show that the student trained with knowledge distillation achieves topic coherence much higher than that of the original student model, and even surpasses the teacher while containing far fewer parameters than the teacher's. The distilled model also outperforms several other competitive topic models on topic coherence.
Pre-trained language models have led to a new state-of-the-art in many NLP tasks. However, for topic modeling, statistical generative models such as LDA are still prevalent, which do not easily allow incorporating contextual word vectors. They might yield topics that do not align very well with human judgment. In this work, we propose a novel topic modeling and inference algorithm. We suggest a bag of sentences (BoS) approach using sentences as the unit of analysis. We leverage pre-trained sentence embeddings by combining generative process models with clustering. We derive a fast inference algorithm based on expectation maximization, hard assignments, and an annealing process. Our evaluation shows that our method yields state-of-the art results with relatively little computational demands. Our methods is more flexible compared to prior works leveraging word embeddings, since it provides the possibility to customize topic-document distributions using priors. Code is at \url{https://github.com/JohnTailor/BertSenClu}.
Digital cryptocurrencies such as Bitcoin have exploded in recent years in both popularity and value. By their novelty, cryptocurrencies tend to be both volatile and highly speculative. The capricious nature of these coins is helped facilitated by social media networks such as Twitter. However, not everyone's opinion matters equally, with most posts garnering little to no attention. Additionally, the majority of tweets are retweeted from popular posts. We must determine whose opinion matters and the difference between influential and non-influential users. This study separates these two groups and analyzes the differences between them. It uses Hypertext-induced Topic Selection (HITS) algorithm, which segregates the dataset based on influence. Topic modeling is then employed to uncover differences in each group's speech types and what group may best represent the entire community. We found differences in language and interest between these two groups regarding Bitcoin and that the opinion leaders of Twitter are not aligned with the majority of users. There were 2559 opinion leaders (0.72% of users) who accounted for 80% of the authority and the majority (99.28%) users for the remaining 20% out of a total of 355,139 users.
We present the TherapyView, a demonstration system to help therapists visualize the dynamic contents of past treatment sessions, enabled by the state-of-the-art neural topic modeling techniques to analyze the topical tendencies of various psychiatric conditions and deep learning-based image generation engine to provide a visual summary. The system incorporates temporal modeling to provide a time-series representation of topic similarities at a turn-level resolution and AI-generated artworks given the dialogue segments to provide a concise representations of the contents covered in the session, offering interpretable insights for therapists to optimize their strategies and enhance the effectiveness of psychotherapy. This system provides a proof of concept of AI-augmented therapy tools with e in-depth understanding of the patient's mental state and enabling more effective treatment.
The COVID-19 pandemic has claimed millions of lives worldwide and elicited heightened emotions. This study examines the expression of various emotions pertaining to COVID-19 in the United States and India as manifested in over 54 million tweets, covering the fifteen-month period from February 2020 through April 2021, a period which includes the beginnings of the huge and disastrous increase in COVID-19 cases that started to ravage India in March 2021. Employing pre-trained emotion analysis and topic modeling algorithms, four distinct types of emotions (fear, anger, happiness, and sadness) and their time- and location-associated variations were examined. Results revealed significant country differences and temporal changes in the relative proportions of fear, anger, and happiness, with fear declining and anger and happiness fluctuating in 2020 until new situations over the first four months of 2021 reversed the trends. Detected differences are discussed briefly in terms of the latent topics revealed and through the lens of appraisal theories of emotions, and the implications of the findings are discussed.
We introduce a new method based on nonnegative matrix factorization, Neural NMF, for detecting latent hierarchical structure in data. Datasets with hierarchical structure arise in a wide variety of fields, such as document classification, image processing, and bioinformatics. Neural NMF recursively applies NMF in layers to discover overarching topics encompassing the lower-level features. We derive a backpropagation optimization scheme that allows us to frame hierarchical NMF as a neural network. We test Neural NMF on a synthetic hierarchical dataset, the 20 Newsgroups dataset, and the MyLymeData symptoms dataset. Numerical results demonstrate that Neural NMF outperforms other hierarchical NMF methods on these data sets and offers better learned hierarchical structure and interpretability of topics.
This paper introduces HADES, a novel tool for automatic comparative documents with similar structures. HADES is designed to streamline the work of professionals dealing with large volumes of documents, such as policy documents, legal acts, and scientific papers. The tool employs a multi-step pipeline that begins with processing PDF documents using topic modeling, summarization, and analysis of the most important words for each topic. The process concludes with an interactive web app with visualizations that facilitate the comparison of the documents. HADES has the potential to significantly improve the productivity of professionals dealing with high volumes of documents, reducing the time and effort required to complete tasks related to comparative document analysis. Our package is publically available on GitHub.
Topic modelling with innovative deep learning methods has gained interest for a wide range of applications that includes COVID-19. Topic modelling can provide, psychological, social and cultural insights for understanding human behaviour in extreme events such as the COVID-19 pandemic. In this paper, we use prominent deep learning-based language models for COVID-19 topic modelling taking into account data from emergence (Alpha) to the Omicron variant. We apply topic modeling to review the public behaviour across the first, second and third waves based on Twitter dataset from India. Our results show that the topics extracted for the subsequent waves had certain overlapping themes such as covers governance, vaccination, and pandemic management while novel issues aroused in political, social and economic situation during COVID-19 pandemic. We also found a strong correlation of the major topics qualitatively to news media prevalent at the respective time period. Hence, our framework has the potential to capture major issues arising during different phases of the COVID-19 pandemic which can be extended to other countries and regions.