Topic modeling is a type of statistical modeling for discovering the abstract topics that occur in a collection of documents.
Recently, reducing redundant visual tokens in vision-language models (VLMs) to accelerate VLM inference has emerged as a hot topic. However, most existing methods rely on heuristics constructed based on inter-visual-token similarity or cross-modal visual-text similarity, which gives rise to certain limitations in compression performance and practical deployment. In contrast, we propose PIO-FVLM from the perspective of inference objectives, which transforms visual token compression into preserving output result invariance and selects tokens primarily by their importance to this goal. Specially, vision tokens are reordered with the guidance of token-level gradient saliency generated by our designed layer-local proxy loss, a coarse constraint from the current layer to the final result. Then the most valuable vision tokens are selected following the non-maximum suppression (NMS) principle. The proposed PIO-FVLM is training-free and compatible with FlashAttention, friendly to practical application and deployment. It can be deployed independently as an encoder-free method, or combined with encoder compression approaches like VisionZip for use as an encoder-involved method. On LLaVA-Next-7B, PIO-FVLM retains just 11.1% of visual tokens but maintains 97.2% of the original performance, with a 2.67$\times$ prefill speedup, 2.11$\times$ inference speedup, 6.22$\times$ lower FLOPs, and 6.05$\times$ reduced KV Cache overhead. Our code is available at https://github.com/ocy1/PIO-FVLM.
Drawing on constructs from psychology, prior work has identified a distinction between explicit and implicit bias in large language models (LLMs). While many LLMs undergo post-training alignment and safety procedures to avoid expressions of explicit social bias, they still exhibit significant implicit biases on indirect tasks resembling the Implicit Association Test (IAT). Recent work has further shown that inference-time reasoning can impair LLM performance on tasks that rely on implicit statistical learning. Motivated by a theoretical link between implicit associations and statistical learning in human cognition, we examine how reasoning-enabled inference affects implicit bias in LLMs. We find that enabling reasoning significantly reduces measured implicit bias on an IAT-style evaluation for some model classes across fifteen stereotype topics. This effect appears specific to social bias domains, as we observe no corresponding reduction for non-social implicit associations. As reasoning is increasingly enabled by default in deployed LLMs, these findings suggest that it can meaningfully alter fairness evaluation outcomes in some systems, while also raising questions about how alignment procedures interact with inference-time reasoning to drive variation in bias reduction across model types. More broadly, this work highlights how theory from cognitive science and psychology can complement AI evaluation research by providing methodological and interpretive frameworks that reveal new insights into model behavior.
This study investigates the use of Large Language Models (LLMs) for political stance detection in informal online discourse, where language is often sarcastic, ambiguous, and context-dependent. We explore whether providing contextual information, specifically user profile summaries derived from historical posts, can improve classification accuracy. Using a real-world political forum dataset, we generate structured profiles that summarize users' ideological leaning, recurring topics, and linguistic patterns. We evaluate seven state-of-the-art LLMs across baseline and context-enriched setups through a comprehensive cross-model evaluation. Our findings show that contextual prompts significantly boost accuracy, with improvements ranging from +17.5\% to +38.5\%, achieving up to 74\% accuracy that surpasses previous approaches. We also analyze how profile size and post selection strategies affect performance, showing that strategically chosen political content yields better results than larger, randomly selected contexts. These findings underscore the value of incorporating user-level context to enhance LLM performance in nuanced political classification tasks.
Topic modeling is a research field finding increasing applications: historically from document retrieving, to sentiment analysis and text summarization. Large Language Models (LLM) are currently a major trend in text processing, but few works study their usefulness for this task. Formal Concept Analysis (FCA) has recently been presented as a candidate for topic modeling, but no real applied case study has been conducted. In this work, we compare LLM and FCA to better understand their strengths and weakneses in the topic modeling field. FCA is evaluated through the CREA pipeline used in past experiments on topic modeling and visualization, whereas GPT-5 is used for the LLM. A strategy based on three prompts is applied with GPT-5 in a zero-shot setup: topic generation from document batches, merging of batch results into final topics, and topic labeling. A first experiment reuses the teaching materials previously used to evaluate CREA, while a second experiment analyzes 40 research articles in information systems to compare the extracted topics with the underling subfields.
We introduce ChemPro, a progressive benchmark with 4100 natural language question-answer pairs in Chemistry, across 4 coherent sections of difficulty designed to assess the proficiency of Large Language Models (LLMs) in a broad spectrum of general chemistry topics. We include Multiple Choice Questions and Numerical Questions spread across fine-grained information recall, long-horizon reasoning, multi-concept questions, problem-solving with nuanced articulation, and straightforward questions in a balanced ratio, effectively covering Bio-Chemistry, Inorganic-Chemistry, Organic-Chemistry and Physical-Chemistry. ChemPro is carefully designed analogous to a student's academic evaluation for basic to high-school chemistry. A gradual increase in the question difficulty rigorously tests the ability of LLMs to progress from solving basic problems to solving more sophisticated challenges. We evaluate 45+7 state-of-the-art LLMs, spanning both open-source and proprietary variants, and our analysis reveals that while LLMs perform well on basic chemistry questions, their accuracy declines with different types and levels of complexity. These findings highlight the critical limitations of LLMs in general scientific reasoning and understanding and point towards understudied dimensions of difficulty, emphasizing the need for more robust methodologies to improve LLMs.
Characterizing the behavior of large language models (LLMs) across diverse settings is critical for reliable monitoring and AI safety. However, most existing analyses rely on topic- or task-specific prompts, which can substantially limit what can be observed. In this work, we study what LLMs generate from minimal, topic-neutral inputs and probe their near-unconstrained generative behavior. Despite the absence of explicit topics, model outputs cover a broad semantic space, and surprisingly, each model family exhibits strong and systematic topical preferences. GPT-OSS predominantly generates programming (27.1%) and mathematical content (24.6%), whereas Llama most frequently generates literary content (9.1%). DeepSeek often generates religious content, while Qwen frequently generates multiple-choice questions. Beyond topical preferences, we also observe differences in content specialization and depth: GPT-OSS often generates more technically advanced content (e.g., dynamic programming) compared with other models (e.g., basic Python). Furthermore, we find that the near-unconstrained generation often degenerates into repetitive phrases, revealing interesting behaviors unique to each model family. For instance, degenerate outputs from Llama include multiple URLs pointing to personal Facebook and Instagram accounts. We release the complete dataset of 256,000 samples from 16 LLMs, along with a reproducible codebase.
Long-term conversational memory is essential for LLM-based assistants, yet existing benchmarks focus on dyadic, single-topic dialogues that fail to capture real-world complexity. We introduce EverMemBench, a benchmark featuring multi-party, multi-group conversations spanning over 1 million tokens with temporally evolving information, cross-topic interleaving, and role-specific personas. EverMemBench evaluates memory systems across three dimensions through 1,000+ QA pairs: fine-grained recall, memory awareness, and user profile understanding. Our evaluation reveals critical limitations: (1) multi-hop reasoning collapses in multi-party settings, with even oracle models achieving only 26%; (2) temporal reasoning remains unsolved, requiring version semantics beyond timestamp matching; (3) memory awareness is bottlenecked by retrieval, where current similarity-based methods fail to bridge the semantic gap between queries and implicitly relevant memories. EverMemBench provides a challenging testbed for developing next-generation memory architectures.
Machine unlearning aims to remove specific content from trained models while preserving overall performance. However, the phenomenon of benign relearning, in which forgotten information reemerges even from benign fine-tuning data, reveals that existing unlearning methods remain fundamentally fragile. A common explanation attributes this effect to topical relevance, but we find this account insufficient. Through systematic analysis, we demonstrate that syntactic similarity, rather than topicality, is the primary driver: across benchmarks, syntactically similar data consistently trigger recovery even without topical overlap, due to their alignment in representations and gradients with the forgotten content. Motivated by this insight, we introduce syntactic diversification, which paraphrases the original forget queries into heterogeneous structures prior to unlearning. This approach effectively suppresses benign relearning, accelerates forgetting, and substantially alleviates the trade-off between unlearning efficacy and model utility.
Large language Model (LLM)-assisted algorithm discovery is an iterative, black-box optimization process over programs to approximatively solve a target task, where an LLM proposes candidate programs and an external evaluator provides task feedback. Despite intense recent research on the topic and promising results, how can the LLM internal representation of the space of possible programs be maximally exploited to improve performance is an open question. Here, we introduce Contrastive Concept-Tree Search (CCTS), which extracts a hierarchical concept representation from the generated programs and learns a contrastive concept model that guides parent selection. By reweighting parents using a likelihood-ratio score between high- and low-performing solutions, CCTS biases search toward useful concept combinations and away from misleading ones, providing guidance through an explicit concept hierarchy rather than the algorithm lineage constructed by the LLM. We show that CCTS improves search efficiency over fitness-based baselines and produces interpretable, task-specific concept trees across a benchmark of open Erdős-type combinatorics problems. Our analysis indicates that the gains are driven largely by learning which concepts to avoid. We further validate these findings in a controlled synthetic algorithm-discovery environment, which reproduces qualitatively the search dynamics observed with the LLMs.
Recent advances in large language models (LLMs) have made automated multiple-choice question (MCQ) generation increasingly feasible; however, reliably producing items that satisfy controlled cognitive demands remains a challenge. To address this gap, we introduce ReQUESTA, a hybrid, multi-agent framework for generating cognitively diverse MCQs that systematically target text-based, inferential, and main idea comprehension. ReQUESTA decomposes MCQ authoring into specialized subtasks and coordinates LLM-powered agents with rule-based components to support planning, controlled generation, iterative evaluation, and post-processing. We evaluated the framework in a large-scale reading comprehension study using academic expository texts, comparing ReQUESTA-generated MCQs with those produced by a single-pass GPT-5 zero-shot baseline. Psychometric analyses of learner responses assessed item difficulty and discrimination, while expert raters evaluated question quality across multiple dimensions, including topic relevance and distractor quality. Results showed that ReQUESTA-generated items were consistently more challenging, more discriminative, and more strongly aligned with overall reading comprehension performance. Expert evaluations further indicated stronger alignment with central concepts and superior distractor linguistic consistency and semantic plausibility, particularly for inferential questions. These findings demonstrate that hybrid, agentic orchestration can systematically improve the reliability and controllability of LLM-based generation, highlighting workflow design as a key lever for structured artifact generation beyond single-pass prompting.