Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"Topic Modeling": models, code, and papers

Coordinated Topic Modeling

Add code

Oct 16, 2022
Pritom Saha Akash, Jie Huang, Kevin Chen-Chuan Chang

We propose a new problem called coordinated topic modeling that imitates human behavior while describing a text corpus. It considers a set of well-defined topics like the axes of a semantic space with a reference representation. It then uses the axes to model a corpus for easily understandable representation. This new task helps represent a corpus more interpretably by reusing existing knowledge and benefits the corpora comparison task. We design ECTM, an embedding-based coordinated topic model that effectively uses the reference representation to capture the target corpus-specific aspects while maintaining each topic's global semantics. In ECTM, we introduce the topic- and document-level supervision with a self-training mechanism to solve the problem. Finally, extensive experiments on multiple domains show the superiority of our model over other baselines.


H2-Golden-Retriever: Methodology and Tool for an Evidence-Based Hydrogen Research Grantsmanship

Add code

Nov 16, 2022
Paul Seurin, Olusola Olabanjo, Joseph Wiggins, Lorien Pratt, Loveneesh Rana, Rozhin Yasaei, Gregory Renard

Hydrogen is poised to play a major role in decarbonizing the economy. The need to discover, develop, and understand low-cost, high-performance, durable materials that can help maximize the cost of electrolysis as well as the need for an intelligent tool to make evidence-based Hydrogen research funding decisions relatively easier warranted this study.In this work, we developed H2 Golden Retriever (H2GR) system for Hydrogen knowledge discovery and representation using Natural Language Processing (NLP), Knowledge Graph and Decision Intelligence. This system represents a novel methodology encapsulating state-of-the-art technique for evidence-based research grantmanship. Relevant Hydrogen papers were scraped and indexed from the web and preprocessing was done using noise and stop-words removal, language and spell check, stemming and lemmatization. The NLP tasks included Named Entity Recognition using Stanford and Spacy NER, topic modeling using Latent Dirichlet Allocation and TF-IDF. The Knowledge Graph module was used for the generation of meaningful entities and their relationships, trends and patterns in relevant H2 papers, thanks to an ontology of the hydrogen production domain. The Decision Intelligence component provides stakeholders with a simulation environment for cost and quantity dependencies. PageRank algorithm was used to rank papers of interest. Random searches were made on the proposed H2GR and the results included a list of papers ranked by relevancy score, entities, graphs of relationships between the entities, ontology of H2 production and Causal Decision Diagrams showing component interactivity. Qualitative assessment was done by the experts and H2GR is deemed to function to a satisfactory level.

* 25 pages 

Learning Semantic Textual Similarity via Topic-informed Discrete Latent Variables

Add code

Nov 07, 2022
Erxin Yu, Lan Du, Yuan Jin, Zhepei Wei, Yi Chang

Recently, discrete latent variable models have received a surge of interest in both Natural Language Processing (NLP) and Computer Vision (CV), attributed to their comparable performance to the continuous counterparts in representation learning, while being more interpretable in their predictions. In this paper, we develop a topic-informed discrete latent variable model for semantic textual similarity, which learns a shared latent space for sentence-pair representation via vector quantization. Compared with previous models limited to local semantic contexts, our model can explore richer semantic information via topic modeling. We further boost the performance of semantic similarity by injecting the quantized representation into a transformer-based language model with a well-designed semantic-driven attention mechanism. We demonstrate, through extensive experiments across various English language datasets, that our model is able to surpass several strong neural baselines in semantic textual similarity tasks.

* 12 pages, 6 figures 

Climate Policy Tracker: Pipeline for automated analysis of public climate policies

Add code

Nov 10, 2022
Artur Żółkowski, Mateusz Krzyziński, Piotr Wilczyński, Stanisław Giziński, Emilia Wiśnios, Bartosz Pieliński, Julian Sienkiewicz, Przemysław Biecek

The number of standardized policy documents regarding climate policy and their publication frequency is significantly increasing. The documents are long and tedious for manual analysis, especially for policy experts, lawmakers, and citizens who lack access or domain expertise to utilize data analytics tools. Potential consequences of such a situation include reduced citizen governance and involvement in climate policies and an overall surge in analytics costs, rendering less accessibility for the public. In this work, we use a Latent Dirichlet Allocation-based pipeline for the automatic summarization and analysis of 10-years of national energy and climate plans (NECPs) for the period from 2021 to 2030, established by 27 Member States of the European Union. We focus on analyzing policy framing, the language used to describe specific issues, to detect essential nuances in the way governments frame their climate policies and achieve climate goals. The methods leverage topic modeling and clustering for the comparative analysis of policy documents across different countries. It allows for easier integration in potential user-friendly applications for the development of theories and processes of climate policy. This would further lead to better citizen governance and engagement over climate policies and public policy research.

* Accepted for Tackling Climate Change with Machine Learning: workshop at NeurIPS 2022 

Submission-Aware Reviewer Profiling for Reviewer Recommender System

Add code

Nov 08, 2022
Omer Anjum, Alok Kamatar, Toby Liang, Jinjun Xiong, Wen-mei Hwu

Assigning qualified, unbiased and interested reviewers to paper submissions is vital for maintaining the integrity and quality of the academic publishing system and providing valuable reviews to authors. However, matching thousands of submissions with thousands of potential reviewers within a limited time is a daunting challenge for a conference program committee. Prior efforts based on topic modeling have suffered from losing the specific context that help define the topics in a publication or submission abstract. Moreover, in some cases, topics identified are difficult to interpret. We propose an approach that learns from each abstract published by a potential reviewer the topics studied and the explicit context in which the reviewer studied the topics. Furthermore, we contribute a new dataset for evaluating reviewer matching systems. Our experiments show a significant, consistent improvement in precision when compared with the existing methods. We also use examples to demonstrate why our recommendations are more explainable. The new approach has been deployed successfully at top-tier conferences in the last two years.


Moving beyond word lists: towards abstractive topic labels for human-like topics of scientific documents

Add code

Oct 28, 2022
Domenic Rosati

Topic models represent groups of documents as a list of words (the topic labels). This work asks whether an alternative approach to topic labeling can be developed that is closer to a natural language description of a topic than a word list. To this end, we present an approach to generating human-like topic labels using abstractive multi-document summarization (MDS). We investigate our approach with an exploratory case study. We model topics in citation sentences in order to understand what further research needs to be done to fully operationalize MDS for topic labeling. Our case study shows that in addition to more human-like topics there are additional advantages to evaluation by using clustering and summarization measures instead of topic model measures. However, we find that there are several developments needed before we can design a well-powered study to evaluate MDS for topic modeling fully. Namely, improving cluster cohesion, improving the factuality and faithfulness of MDS, and increasing the number of documents that might be supported by MDS. We present a number of ideas on how these can be tackled and conclude with some thoughts on how topic modeling can also be used to improve MDS in general.

* Accepted to WIESP @ AACL-IJCNLP 

Transition to Adulthood for Young People with Intellectual or Developmental Disabilities: Emotion Detection and Topic Modeling

Add code

Sep 21, 2022
Yan Liu, Maria Laricheva, Chiyu Zhang, Patrick Boutet, Guanyu Chen, Terence Tracey, Giuseppe Carenini, Richard Young

Transition to Adulthood is an essential life stage for many families. The prior research has shown that young people with intellectual or development disabil-ities (IDD) have more challenges than their peers. This study is to explore how to use natural language processing (NLP) methods, especially unsupervised machine learning, to assist psychologists to analyze emotions and sentiments and to use topic modeling to identify common issues and challenges that young people with IDD and their families have. Additionally, the results were compared to those obtained from young people without IDD who were in tran-sition to adulthood. The findings showed that NLP methods can be very useful for psychologists to analyze emotions, conduct cross-case analysis, and sum-marize key topics from conversational data. Our Python code is available at

* In: Thomson, R., Dancy, C., Pyke, A. (eds) SBP-BRiMS 2022. Lecture Notes in Computer Science, vol 13558. Springer, Cham (2022) 
* Conference proceedings of 2022 SBP-BRiMS 

Are Neural Topic Models Broken?

Add code

Oct 28, 2022
Alexander Hoyle, Pranav Goel, Rupak Sarkar, Philip Resnik

Recently, the relationship between automated and human evaluation of topic models has been called into question. Method developers have staked the efficacy of new topic model variants on automated measures, and their failure to approximate human preferences places these models on uncertain ground. Moreover, existing evaluation paradigms are often divorced from real-world use. Motivated by content analysis as a dominant real-world use case for topic modeling, we analyze two related aspects of topic models that affect their effectiveness and trustworthiness in practice for that purpose: the stability of their estimates and the extent to which the model's discovered categories align with human-determined categories in the data. We find that neural topic models fare worse in both respects compared to an established classical method. We take a step toward addressing both issues in tandem by demonstrating that a straightforward ensembling method can reliably outperform the members of the ensemble.

* Accepted to Findings of EMNLP 2022 

Structure-Preserving 3D Garment Modeling with Neural Sewing Machines

Add code

Nov 12, 2022
Xipeng Chen, Guangrun Wang, Dizhong Zhu, Xiaodan Liang, Philip H. S. Torr, Liang Lin

3D Garment modeling is a critical and challenging topic in the area of computer vision and graphics, with increasing attention focused on garment representation learning, garment reconstruction, and controllable garment manipulation, whereas existing methods were constrained to model garments under specific categories or with relatively simple topologies. In this paper, we propose a novel Neural Sewing Machine (NSM), a learning-based framework for structure-preserving 3D garment modeling, which is capable of learning representations for garments with diverse shapes and topologies and is successfully applied to 3D garment reconstruction and controllable manipulation. To model generic garments, we first obtain sewing pattern embedding via a unified sewing pattern encoding module, as the sewing pattern can accurately describe the intrinsic structure and the topology of the 3D garment. Then we use a 3D garment decoder to decode the sewing pattern embedding into a 3D garment using the UV-position maps with masks. To preserve the intrinsic structure of the predicted 3D garment, we introduce an inner-panel structure-preserving loss, an inter-panel structure-preserving loss, and a surface-normal loss in the learning process of our framework. We evaluate NSM on the public 3D garment dataset with sewing patterns with diverse garment shapes and categories. Extensive experiments demonstrate that the proposed NSM is capable of representing 3D garments under diverse garment shapes and topologies, realistically reconstructing 3D garments from 2D images with the preserved structure, and accurately manipulating the 3D garment categories, shapes, and topologies, outperforming the state-of-the-art methods by a clear margin.

* NeurIPS 2022 

SeNMFk-SPLIT: Large Corpora Topic Modeling by Semantic Non-negative Matrix Factorization with Automatic Model Selection

Add code

Aug 21, 2022
Maksim E. Eren, Nick Solovyev, Manish Bhattarai, Kim Rasmussen, Charles Nicholas, Boian S. Alexandrov

As the amount of text data continues to grow, topic modeling is serving an important role in understanding the content hidden by the overwhelming quantity of documents. One popular topic modeling approach is non-negative matrix factorization (NMF), an unsupervised machine learning (ML) method. Recently, Semantic NMF with automatic model selection (SeNMFk) has been proposed as a modification to NMF. In addition to heuristically estimating the number of topics, SeNMFk also incorporates the semantic structure of the text. This is performed by jointly factorizing the term frequency-inverse document frequency (TF-IDF) matrix with the co-occurrence/word-context matrix, the values of which represent the number of times two words co-occur in a predetermined window of the text. In this paper, we introduce a novel distributed method, SeNMFk-SPLIT, for semantic topic extraction suitable for large corpora. Contrary to SeNMFk, our method enables the joint factorization of large documents by decomposing the word-context and term-document matrices separately. We demonstrate the capability of SeNMFk-SPLIT by applying it to the entire artificial intelligence (AI) and ML scientific literature uploaded on arXiv.

* Accepted at ACM Symposium on Document Engineering 2022 (DocEng 22), 2022