Topic:Time Series Analysis
What is Time Series Analysis? Time series analysis comprises statistical methods for analyzing a sequence of data points collected over an interval of time to identify interesting patterns and trends.
Papers and Code
May 19, 2025
Abstract:Reservoir computing is a form of machine learning particularly suited for time series analysis, including forecasting predictions. We take an implementation of \emph{quantum} reservoir computing that was initially designed to generate variants of musical scores and adapt it to create levels of Super Mario Bros. Motivated by our analysis of these levels, we develop a new Roblox \textit{obby} where the courses can be generated in real time on superconducting qubit hardware, and investigate some of the constraints placed by such real-time generation.
Via

May 19, 2025
Abstract:The rise of time-series pre-trained models has advanced temporal representation learning, but current state-of-the-art models are often large-scale, requiring substantial compute. We introduce TSPulse, ultra-compact time-series pre-trained models with only 1M parameters, specialized to perform strongly across classification, anomaly detection, imputation, and retrieval tasks. TSPulse introduces innovations at both the architecture and task levels. At the architecture level, it employs a dual-space masked reconstruction, learning from both time and frequency domains to capture complementary signals. This is further enhanced by a dual-embedding disentanglement, generating both detailed embeddings for fine-grained analysis and high-level semantic embeddings for broader task understanding. Notably, TSPulse's semantic embeddings are robust to shifts in time, magnitude, and noise, which is important for robust retrieval. At the task level, TSPulse incorporates TSLens, a fine-tuning component enabling task-specific feature attention. It also introduces a multi-head triangulation technique that correlates deviations from multiple prediction heads, enhancing anomaly detection by fusing complementary model outputs. Additionally, a hybrid mask pretraining is proposed to improves zero-shot imputation by reducing pre-training bias. These architecture and task innovations collectively contribute to TSPulse's significant performance gains: 5-16% on the UEA classification benchmarks, +20% on the TSB-AD anomaly detection leaderboard, +50% in zero-shot imputation, and +25% in time-series retrieval. Remarkably, these results are achieved with just 1M parameters, making TSPulse 10-100X smaller than existing pre-trained models. Its efficiency enables GPU-free inference and rapid pre-training, setting a new standard for efficient time-series pre-trained models. Models will be open-sourced soon.
Via

May 19, 2025
Abstract:Causal networks offer an intuitive framework to understand influence structures within time series systems. However, the presence of cycles can obscure dynamic relationships and hinder hierarchical analysis. These networks are typically identified through multivariate predictive modelling, but enforcing acyclic constraints significantly increases computational and analytical complexity. Despite recent advances, there remains a lack of simple, flexible approaches that are easily tailorable to specific problem instances. We propose an evolutionary approach to fitting acyclic vector autoregressive processes and introduces a novel hierarchical representation that directly models structural elements within a time series system. On simulated datasets, our model retains most of the predictive accuracy of unconstrained models and outperforms permutation-based alternatives. When applied to a dataset of 100 cryptocurrency return series, our method generates acyclic causal networks capturing key structural properties of the unconstrained model. The acyclic networks are approximately sub-graphs of the unconstrained networks, and most of the removed links originate from low-influence nodes. Given the high levels of feature preservation, we conclude that this cryptocurrency price system functions largely hierarchically. Our findings demonstrate a flexible, intuitive approach for identifying hierarchical causal networks in time series systems, with broad applications to fields like econometrics and social network analysis.
Via

May 18, 2025
Abstract:With Large language models (LLMs) becoming increasingly prevalent in various applications, the need for interpreting their predictions has become a critical challenge. As LLMs vary in architecture and some are closed-sourced, model-agnostic techniques show great promise without requiring access to the model's internal parameters. However, existing model-agnostic techniques need to invoke LLMs many times to gain sufficient samples for generating faithful explanations, which leads to high economic costs. In this paper, we show that it is practical to generate faithful explanations for large-scale LLMs by sampling from some budget-friendly models through a series of empirical studies. Moreover, we show that such proxy explanations also perform well on downstream tasks. Our analysis provides a new paradigm of model-agnostic explanation methods for LLMs, by including information from budget-friendly models.
Via

May 15, 2025
Abstract:The growing use of smartphones and IoT devices necessitates efficient time-series analysis on resource-constrained hardware, which is critical for sensing applications such as human activity recognition and air quality prediction. Recent efforts in hardware-aware neural architecture search (NAS) automate architecture discovery for specific platforms; however, none focus on general time-series analysis with edge deployment. Leveraging the problem-solving and reasoning capabilities of large language models (LLM), we propose MONAQ, a novel framework that reformulates NAS into Multi-Objective Neural Architecture Querying tasks. MONAQ is equipped with multimodal query generation for processing multimodal time-series inputs and hardware constraints, alongside an LLM agent-based multi-objective search to achieve deployment-ready models via code generation. By integrating numerical data, time-series images, and textual descriptions, MONAQ improves an LLM's understanding of time-series data. Experiments on fifteen datasets demonstrate that MONAQ-discovered models outperform both handcrafted models and NAS baselines while being more efficient.
Via

May 16, 2025
Abstract:Time series forecasting is important for applications spanning energy markets, climate analysis, and traffic management. However, existing methods struggle to effectively integrate exogenous texts and align them with the probabilistic nature of large language models (LLMs). Current approaches either employ shallow text-time series fusion via basic prompts or rely on deterministic numerical decoding that conflict with LLMs' token-generation paradigm, which limits contextual awareness and distribution modeling. To address these limitations, we propose CAPTime, a context-aware probabilistic multimodal time series forecasting method that leverages text-informed abstraction and autoregressive LLM decoding. Our method first encodes temporal patterns using a pretrained time series encoder, then aligns them with textual contexts via learnable interactions to produce joint multimodal representations. By combining a mixture of distribution experts with frozen LLMs, we enable context-aware probabilistic forecasting while preserving LLMs' inherent distribution modeling capabilities. Experiments on diverse time series forecasting tasks demonstrate the superior accuracy and generalization of CAPTime, particularly in multimodal scenarios. Additional analysis highlights its robustness in data-scarce scenarios through hybrid probabilistic decoding.
* 13 pages, 2 figures
Via

May 16, 2025
Abstract:Psychiatric disorders affect millions globally, yet their diagnosis faces significant challenges in clinical practice due to subjective assessments and accessibility concerns, leading to potential delays in treatment. To help address this issue, we present Heart2Mind, a human-centered contestable psychiatric disorder diagnosis system using wearable electrocardiogram (ECG) monitors. Our approach leverages cardiac biomarkers, particularly heart rate variability (HRV) and R-R intervals (RRI) time series, as objective indicators of autonomic dysfunction in psychiatric conditions. The system comprises three key components: (1) a Cardiac Monitoring Interface (CMI) for real-time data acquisition from Polar H9/H10 devices; (2) a Multi-Scale Temporal-Frequency Transformer (MSTFT) that processes RRI time series through integrated time-frequency domain analysis; (3) a Contestable Diagnosis Interface (CDI) combining Self-Adversarial Explanations (SAEs) with contestable Large Language Models (LLMs). Our MSTFT achieves 91.7% accuracy on the HRV-ACC dataset using leave-one-out cross-validation, outperforming state-of-the-art methods. SAEs successfully detect inconsistencies in model predictions by comparing attention-based and gradient-based explanations, while LLMs enable clinicians to validate correct predictions and contest erroneous ones. This work demonstrates the feasibility of combining wearable technology with Explainable Artificial Intelligence (XAI) and contestable LLMs to create a transparent, contestable system for psychiatric diagnosis that maintains clinical oversight while leveraging advanced AI capabilities. Our implementation is publicly available at: https://github.com/Analytics-Everywhere-Lab/heart2mind.
* 41 pages
Via

May 16, 2025
Abstract:Time series forecasting is critical across multiple domains, where time series data exhibits both local patterns and global dependencies. While Transformer-based methods effectively capture global dependencies, they often overlook short-term local variations in time series. Recent methods that adapt large language models (LLMs) into time series forecasting inherit this limitation by treating LLMs as black-box encoders, relying solely on the final-layer output and underutilizing hierarchical representations. To address this limitation, we propose Logo-LLM, a novel LLM-based framework that explicitly extracts and models multi-scale temporal features from different layers of a pre-trained LLM. Through empirical analysis, we show that shallow layers of LLMs capture local dynamics in time series, while deeper layers encode global trends. Moreover, Logo-LLM introduces lightweight Local-Mixer and Global-Mixer modules to align and integrate features with the temporal input across layers. Extensive experiments demonstrate that Logo-LLM achieves superior performance across diverse benchmarks, with strong generalization in few-shot and zero-shot settings while maintaining low computational overhead.
Via

May 16, 2025
Abstract:Time series forecasting plays a crucial role in various fields, and the methods based on frequency domain analysis have become an important branch. However, most existing studies focus on the design of elaborate model architectures and are often tailored for limited datasets, still lacking universality. Besides, the assumption of independent and identically distributed (IID) data also contradicts the strong correlation of the time domain labels. To address these issues, abandoning time domain supervision, we propose a purely frequency domain supervision approach named cross-dimensional frequency (X-Freq) loss. Specifically, based on a statistical phenomenon, we first prove that the information entropy of the time series is higher than its spectral entropy, which implies higher certainty in frequency domain and thus can provide better supervision. Secondly, the Fourier Transform and the Wavelet Transform are applied to the time dimension and the channel dimension of the time series respectively, to capture the long-term and short-term frequency variations as well as the spatial configuration features. Thirdly, the loss between predictions and targets is uniformly computed in the frequency domain. Moreover, we plug-and-play incorporate X-Freq into multiple advanced forecasting models and compare on 14 real-world datasets. The experimental results demonstrate that, without making any modification to the original architectures or hyperparameters, X-Freq can improve the forecasting performance by an average of 3.3% on long-term forecasting datasets and 27.7% on short-term ones, showcasing superior generality and practicality. The code will be released publicly.
Via

May 16, 2025
Abstract:We propose the Fourier Adaptive Lite Diffusion Architecture (FALDA), a novel probabilistic framework for time series forecasting. First, we introduce the Diffusion Model for Residual Regression (DMRR) framework, which unifies diffusion-based probabilistic regression methods. Within this framework, FALDA leverages Fourier-based decomposition to incorporate a component-specific architecture, enabling tailored modeling of individual temporal components. A conditional diffusion model is utilized to estimate the future noise term, while our proposed lightweight denoiser, DEMA (Decomposition MLP with AdaLN), conditions on the historical noise term to enhance denoising performance. Through mathematical analysis and empirical validation, we demonstrate that FALDA effectively reduces epistemic uncertainty, allowing probabilistic learning to primarily focus on aleatoric uncertainty. Experiments on six real-world benchmarks demonstrate that FALDA consistently outperforms existing probabilistic forecasting approaches across most datasets for long-term time series forecasting while achieving enhanced computational efficiency without compromising accuracy. Notably, FALDA also achieves superior overall performance compared to state-of-the-art (SOTA) point forecasting approaches, with improvements of up to 9%.
Via
