Automatic evaluation in grammatical error correction (GEC) is crucial for selecting the best-performing systems. Currently, reference-based metrics are a popular choice, which basically measure the similarity between hypothesis and reference sentences. However, similarity measures based on embeddings, such as BERTScore, are often ineffective, since many words in the source sentences remain unchanged in both the hypothesis and the reference. This study focuses on edits specifically designed for GEC, i.e., ERRANT, and computes similarity measured over the edits from the source sentence. To this end, we propose edit vector, a representation for an edit, and introduce a new metric, UOT-ERRANT, which transports these edit vectors from hypothesis to reference using unbalanced optimal transport. Experiments with SEEDA meta-evaluation show that UOT-ERRANT improves evaluation performance, particularly in the +Fluency domain where many edits occur. Moreover, our method is highly interpretable because the transport plan can be interpreted as a soft edit alignment, making UOT-ERRANT a useful metric for both system ranking and analyzing GEC systems. Our code is available from https://github.com/gotutiyan/uot-errant.
Search behaviour is characterised using synonymy and polysemy as users often want to search information based on meaning. Semantic representation strategies represent a move towards richer associative connections that can adequately capture this complex usage of language. Vector Space Modelling (VSM) and neural word embeddings play a crucial role in modern machine learning and Natural Language Processing (NLP) pipelines. Embeddings use distributional semantics to represent words, sentences, paragraphs or entire documents as vectors in high dimensional spaces. This can be leveraged by Information Retrieval (IR) systems to exploit the semantic relatedness between queries and answers. This paper evaluates an alternative approach to measuring query statement similarity that moves away from the common similarity measure of centroids of neural word embeddings. Motivated by the Word Movers Distance (WMD) model, similarity is evaluated using the distance between individual words of queries and statements. Results from ranked query and response statements demonstrate significant gains in accuracy using the combined approach of similarity ranking through WMD with the word embedding techniques. The top performing WMD + GloVe combination outperforms all other state-of-the-art retrieval models including Doc2Vec and the baseline LSA model. Along with the significant gains in performance of similarity ranking through WMD, we conclude that the use of pre-trained word embeddings, trained on vast amounts of data, result in domain agnostic language processing solutions that are portable to diverse business use-cases.
Despite remarkable advances in natural language processing, developing effective systems for low-resource languages remains a formidable challenge, with performances typically lagging far behind high-resource counterparts due to data scarcity and insufficient linguistic resources. Cross-lingual knowledge transfer has emerged as a promising approach to address this challenge by leveraging resources from high-resource languages. In this paper, we investigate methods for transferring linguistic knowledge from high-resource languages to low-resource languages, where the number of labeled training instances is in hundreds. We focus on sentence-level and word-level tasks. We introduce a novel method, GETR (Graph-Enhanced Token Representation) for cross-lingual knowledge transfer along with two adopted baselines (a) augmentation in hidden layers and (b) token embedding transfer through token translation. Experimental results demonstrate that our GNN-based approach significantly outperforms existing multilingual and cross-lingual baseline methods, achieving 13 percentage point improvements on truly low-resource languages (Mizo, Khasi) for POS tagging, and 20 and 27 percentage point improvements in macro-F1 on simulated low-resource languages (Marathi, Bangla, Malayalam) across sentiment classification and NER tasks respectively. We also present a detailed analysis of the transfer mechanisms and identify key factors that contribute to successful knowledge transfer in this linguistic context.
Language models (LMs) are a central component of modern AI systems, and diffusion-based language models (DLMs) have recently emerged as a competitive alternative. Both paradigms rely on word embeddings not only to represent the input sentence, but also to represent the target sentence that backbone models are trained to predict. We argue that such static embedding of the target word is insensitive to neighboring words, encouraging locally accurate word prediction while neglecting global structure across the target sentence. To address this limitation, we propose a continuous sentence representation, termed sentence curve, defined as a spline curve whose control points affect multiple words in the sentence. Based on this representation, we introduce sentence curve language model (SCLM), which extends DLMs to predict sentence curves instead of the static word embeddings. We theoretically show that sentence curve prediction induces a regularization effect that promotes global structure modeling, and characterize how different sentence curve types affect this behavior. Empirically, SCLM achieves SOTA performance among DLMs on IWSLT14 and WMT14, shows stable training without burdensome knowledge distillation, and demonstrates promising potential compared to discrete DLMs on LM1B.
Semantic textual similarity (STS) plays a crucial role in many natural language processing tasks. While extensively studied in high-resource languages, STS remains challenging for under-resourced languages such as Slovak. This paper presents a comparative evaluation of sentence-level STS methods applied to Slovak, including traditional algorithms, supervised machine learning models, and third-party deep learning tools. We trained several machine learning models using outputs from traditional algorithms as features, with feature selection and hyperparameter tuning jointly guided by artificial bee colony optimization. Finally, we evaluated several third-party tools, including fine-tuned model by CloudNLP, OpenAI's embedding models, GPT-4 model, and pretrained SlovakBERT model. Our findings highlight the trade-offs between different approaches.
Sentence representations are foundational to many Natural Language Processing (NLP) applications. While recent methods leverage Large Language Models (LLMs) to derive sentence representations, most rely on final-layer hidden states, which are optimized for next-token prediction and thus often fail to capture global, sentence-level semantics. This paper introduces a novel perspective, demonstrating that attention value vectors capture sentence semantics more effectively than hidden states. We propose Value Aggregation (VA), a simple method that pools token values across multiple layers and token indices. In a training-free setting, VA outperforms other LLM-based embeddings, even matches or surpasses the ensemble-based MetaEOL. Furthermore, we demonstrate that when paired with suitable prompts, the layer attention outputs can be interpreted as aligned weighted value vectors. Specifically, the attention scores of the last token function as the weights, while the output projection matrix ($W_O$) aligns these weighted value vectors with the common space of the LLM residual stream. This refined method, termed Aligned Weighted VA (AlignedWVA), achieves state-of-the-art performance among training-free LLM-based embeddings, outperforming the high-cost MetaEOL by a substantial margin. Finally, we highlight the potential of obtaining strong LLM embedding models through fine-tuning Value Aggregation.
The proliferation of retrieval-augmented generation (RAG) has established vector databases as critical infrastructure, yet they introduce severe privacy risks via embedding inversion attacks. Existing paradigms face a fundamental trade-off: optimization-based methods require computationally prohibitive queries, while alignment-based approaches hinge on the unrealistic assumption of accessible in-domain training data. These constraints render them ineffective in strict black-box and cross-domain settings. To dismantle these barriers, we introduce Zero2Text, a novel training-free framework based on recursive online alignment. Unlike methods relying on static datasets, Zero2Text synergizes LLM priors with a dynamic ridge regression mechanism to iteratively align generation to the target embedding on-the-fly. We further demonstrate that standard defenses, such as differential privacy, fail to effectively mitigate this adaptive threat. Extensive experiments across diverse benchmarks validate Zero2Text; notably, on MS MARCO against the OpenAI victim model, it achieves 1.8x higher ROUGE-L and 6.4x higher BLEU-2 scores compared to baselines, recovering sentences from unknown domains without a single leaked data pair.
Large language models (LLMs) are increasingly deployed in domains where errors carry high social, scientific, or safety costs. Yet standard confidence estimators, such as token likelihood, semantic similarity and multi-sample consistency, remain brittle under distribution shift, domain-specialised text, and compute limits. In this work, we present Structural Confidence, a single-pass, model-agnostic framework that enhances output correctness prediction based on multi-scale structural signals derived from a model's final-layer hidden-state trajectory. By combining spectral, local-variation, and global shape descriptors, our method captures internal stability patterns that are missed by probabilities and sentence embeddings. We conduct extensive, cross-domain evaluation across four heterogeneous benchmarks-FEVER (fact verification), SciFact (scientific claims), WikiBio-hallucination (biographical consistency), and TruthfulQA (truthfulness-oriented QA). Our Structural Confidence framework demonstrates strong performance compared with established baselines in terms of AUROC and AUPR. More importantly, unlike sampling-based consistency methods which require multiple stochastic generations and an auxiliary model, our approach uses a single deterministic forward pass, offering a practical basis for efficient, robust post-hoc confidence estimation in socially impactful, resource-constrained LLM applications.
Open-vocabulary grounding requires accurate vision-language alignment under weak supervision, yet existing methods either rely on global sentence embeddings that lack fine-grained expressiveness or introduce token-level alignment with explicit supervision or heavy cross-attention designs. We propose ExpAlign, a theoretically grounded vision-language alignment framework built on a principled multiple instance learning formulation. ExpAlign introduces an Expectation Alignment Head that performs attention-based soft MIL pooling over token-region similarities, enabling implicit token and instance selection without additional annotations. To further stabilize alignment learning, we develop an energy-based multi-scale consistency regularization scheme, including a Top-K multi-positive contrastive objective and a Geometry-Aware Consistency Objective derived from a Lagrangian-constrained free-energy minimization. Extensive experiments show that ExpAlign consistently improves open-vocabulary detection and zero-shot instance segmentation, particularly on long-tail categories. Most notably, it achieves 36.2 AP$_r$ on the LVIS minival split, outperforming other state-of-the-art methods at comparable model scale, while remaining lightweight and inference-efficient.
While language progresses through a sequence of semantic states, the underlying dynamics of this progression remain elusive. Here, we treat the semantic progression of written text as a stochastic trajectory in a high-dimensional state space. We utilize Allan deviation, a tool from precision metrology, to analyze the stability of meaning by treating ordered sentence embeddings as a displacement signal. Our analysis reveals two distinct dynamical regimes: short-time power-law scaling, which differentiates creative literature from technical texts, and a long-time crossover to a stability-limited noise floor. We find that while large language models successfully mimic the local scaling statistics of human text, they exhibit a systematic reduction in their stability horizon. These results establish semantic coherence as a measurable physical property, offering a framework to differentiate the nuanced dynamics of human cognition from the patterns generated by algorithmic models.