Abstract:The introduction of large language models ignited great retooling and rethinking of the software development models. The ensuing response of software engineering research yielded a massive body of tools and approaches. In this paper, we join the hassle by introducing agentic AI solutions for two tasks. First, we developed a solution for automatic test scenario generation from a detailed requirements description. This approach relies on specialized worker agents forming a star topology with the supervisor agent in the middle. We demonstrate its capabilities on a real-world example. Second, we developed an agentic AI solution for the document retrieval task in the context of software engineering documents. Our solution enables performing various use cases on a body of documents related to the development of a single software, including search, question answering, tracking changes, and large document summarization. In this case, each use case is handled by a dedicated LLM-based agent, which performs all subtasks related to the corresponding use case. We conclude by hinting at the future perspectives of our line of research.
Abstract:Semantic textual similarity (STS) plays a crucial role in many natural language processing tasks. While extensively studied in high-resource languages, STS remains challenging for under-resourced languages such as Slovak. This paper presents a comparative evaluation of sentence-level STS methods applied to Slovak, including traditional algorithms, supervised machine learning models, and third-party deep learning tools. We trained several machine learning models using outputs from traditional algorithms as features, with feature selection and hyperparameter tuning jointly guided by artificial bee colony optimization. Finally, we evaluated several third-party tools, including fine-tuned model by CloudNLP, OpenAI's embedding models, GPT-4 model, and pretrained SlovakBERT model. Our findings highlight the trade-offs between different approaches.