Time series forecasting in real-world applications requires both high predictive accuracy and interpretable uncertainty quantification. Traditional point prediction methods often fail to capture the inherent uncertainty in time series data, while existing probabilistic approaches struggle to balance computational efficiency with interpretability. We propose a novel Multi-Expert Learning Distributional Labels (LDL) framework that addresses these challenges through mixture-of-experts architectures with distributional learning capabilities. Our approach introduces two complementary methods: (1) Multi-Expert LDL, which employs multiple experts with different learned parameters to capture diverse temporal patterns, and (2) Pattern-Aware LDL-MoE, which explicitly decomposes time series into interpretable components (trend, seasonality, changepoints, volatility) through specialized sub-experts. Both frameworks extend traditional point prediction to distributional learning, enabling rich uncertainty quantification through Maximum Mean Discrepancy (MMD). We evaluate our methods on aggregated sales data derived from the M5 dataset, demonstrating superior performance compared to baseline approaches. The continuous Multi-Expert LDL achieves the best overall performance, while the Pattern-Aware LDL-MoE provides enhanced interpretability through component-wise analysis. Our frameworks successfully balance predictive accuracy with interpretability, making them suitable for real-world forecasting applications where both performance and actionable insights are crucial.
Time series forecasting can be viewed as a generative problem that requires both semantic understanding over contextual conditions and stochastic modeling of continuous temporal dynamics. Existing approaches typically rely on either autoregressive large language models (LLMs) for semantic context modeling or diffusion-like models for continuous probabilistic generation. However, neither method alone can adequately model both aspects simultaneously. In this work, we propose CoGenCast, a hybrid generative framework that couples pre-trained LLMs with flow-matching mechanism for effective time series forecasting. Specifically, we reconfigure pre-trained decoder-only LLMs into a native forecasting encoder-decoder backbone by modifying only the attention topology, enabling bidirectional context encoding and causal representation generation. Building on this, a flow-matching mechanism is further integrated to model temporal evolution, capturing continuous stochastic dynamics conditioned on the autoregressively generated representation. Notably, CoGenCast naturally supports multimodal forecasting and cross-domain unified training. Extensive experiments on multiple benchmarks show that CoGenCast consistently outperforms previous compared baselines. Code is available at https://github.com/liuyaguo/_CoGenCast.
Forecasting rare events in multivariate time-series data is challenging due to severe class imbalance, long-range dependencies, and distributional uncertainty. We introduce EVEREST, a transformer-based architecture for probabilistic rare-event forecasting that delivers calibrated predictions and tail-aware risk estimation, with auxiliary interpretability via attention-based signal attribution. EVEREST integrates four components: (i) a learnable attention bottleneck for soft aggregation of temporal dynamics; (ii) an evidential head for estimating aleatoric and epistemic uncertainty via a Normal--Inverse--Gamma distribution; (iii) an extreme-value head that models tail risk using a Generalized Pareto Distribution; and (iv) a lightweight precursor head for early-event detection. These modules are jointly optimized with a composite loss (focal loss, evidential NLL, and a tail-sensitive EVT penalty) and act only at training time; deployment uses a single classification head with no inference overhead (approximately 0.81M parameters). On a decade of space-weather data, EVEREST achieves state-of-the-art True Skill Statistic (TSS) of 0.973/0.970/0.966 at 24/48/72-hour horizons for C-class flares. The model is compact, efficient to train on commodity hardware, and applicable to high-stakes domains such as industrial monitoring, weather, and satellite diagnostics. Limitations include reliance on fixed-length inputs and exclusion of image-based modalities, motivating future extensions to streaming and multimodal forecasting.
Probabilistic time series forecasting is crucial for quantifying future uncertainty, with significant applications in fields such as energy and finance. However, existing methods often rely on computationally expensive sampling or restrictive parametric assumptions to characterize future distributions, which limits predictive performance and introduces distributional mismatch. To address these challenges, this paper presents TimeGMM, a novel probabilistic forecasting framework based on Gaussian Mixture Models (GMM) that captures complex future distributions in a single forward pass. A key component is GMM-adapted Reversible Instance Normalization (GRIN), a novel module designed to dynamically adapt to temporal-probabilistic distribution shifts. The framework integrates a dedicated Temporal Encoder (TE-Module) with a Conditional Temporal-Probabilistic Decoder (CTPD-Module) to jointly capture temporal dependencies and mixture distribution parameters. Extensive experiments demonstrate that TimeGMM consistently outperforms state-of-the-art methods, achieving maximum improvements of 22.48\% in CRPS and 21.23\% in NMAE.
Intermittent time series, characterised by the presence of a significant amount of zeros, constitute a large percentage of inventory items in supply chain. Probabilistic forecasts are needed to plan the inventory levels; the predictive distribution should cover non-negative values, have a mass in zero and a long upper tail. Intermittent time series are commonly forecast using local models, which are trained individually on each time series. In the last years global models, which are trained on a large collection of time series, have become popular for time series forecasting. Global models are often based on neural networks. However, they have not yet been exhaustively tested on intermittent time series. We carry out the first study comparing state-of-the-art local (iETS, TweedieGP) and global models (D-Linear, DeepAR, Transformers) on intermittent time series. For neural networks models we consider three different distribution heads suitable for intermittent time series: negative binomial, hurdle-shifted negative binomial and Tweedie. We use, for the first time, the last two distribution heads with neural networks. We perform experiments on five large datasets comprising more than 40'000 real-world time series. Among neural networks D-Linear provides best accuracy; it also consistently outperforms the local models. Moreover, it has also low computational requirements. Transformers-based architectures are instead much more computationally demanding and less accurate. Among the distribution heads, the Tweedie provides the best estimates of the highest quantiles, while the negative binomial offers overall the best performance.
The reliability of data-driven applications in electric vehicle (EV) infrastructure, such as charging demand forecasting, hinges on the availability of complete, high-quality charging data. However, real-world EV datasets are often plagued by missing records, and existing imputation methods are ill-equipped for the complex, multimodal context of charging data, often relying on a restrictive one-model-per-station paradigm that ignores valuable inter-station correlations. To address these gaps, we develop a novel PRobabilistic variational imputation framework that leverages the power of large lAnguage models and retrIeval-augmented Memory (PRAIM). PRAIM employs a pre-trained language model to encode heterogeneous data, spanning time-series demand, calendar features, and geospatial context, into a unified, semantically rich representation. This is dynamically fortified by retrieval-augmented memory that retrieves relevant examples from the entire charging network, enabling a single, unified imputation model empowered by variational neural architecture to overcome data sparsity. Extensive experiments on four public datasets demonstrate that PRAIM significantly outperforms established baselines in both imputation accuracy and its ability to preserve the original data's statistical distribution, leading to substantial improvements in downstream forecasting performance.
Time Series Foundation Models (TSFMs) have emerged as a promising approach for zero-shot financial forecasting, demonstrating strong transferability and data efficiency gains. However, their adoption in financial applications is hindered by fundamental limitations in uncertainty quantification: current approaches either rely on restrictive distributional assumptions, conflate different sources of uncertainty, or lack principled calibration mechanisms. While recent TSFMs employ sophisticated techniques such as mixture models, Student's t-distributions, or conformal prediction, they fail to address the core challenge of providing theoretically-grounded uncertainty decomposition. For the very first time, we present a novel transformer-based probabilistic framework, ProbFM (probabilistic foundation model), that leverages Deep Evidential Regression (DER) to provide principled uncertainty quantification with explicit epistemic-aleatoric decomposition. Unlike existing approaches that pre-specify distributional forms or require sampling-based inference, ProbFM learns optimal uncertainty representations through higher-order evidence learning while maintaining single-pass computational efficiency. To rigorously evaluate the core DER uncertainty quantification approach independent of architectural complexity, we conduct an extensive controlled comparison study using a consistent LSTM architecture across five probabilistic methods: DER, Gaussian NLL, Student's-t NLL, Quantile Loss, and Conformal Prediction. Evaluation on cryptocurrency return forecasting demonstrates that DER maintains competitive forecasting accuracy while providing explicit epistemic-aleatoric uncertainty decomposition. This work establishes both an extensible framework for principled uncertainty quantification in foundation models and empirical evidence for DER's effectiveness in financial applications.
This paper develops an approach for multi-step forecasting of dynamical systems by integrating probabilistic input forecasting with physics-informed output prediction. Accurate multi-step forecasting of time series systems is important for the automatic control and optimization of physical processes, enabling more precise decision-making. While mechanistic-based and data-driven machine learning (ML) approaches have been employed for time series forecasting, they face significant limitations. Incomplete knowledge of process mathematical models limits mechanistic-based direct employment, while purely data-driven ML models struggle with dynamic environments, leading to poor generalization. To address these limitations, this paper proposes a dual-level strategy for physics-informed forecasting of dynamical systems. On the first level, input variables are forecast using a hybrid method that integrates a long short-term memory (LSTM) network into probabilistic state transition models (STMs). On the second level, these stochastically predicted inputs are sequentially fed into a physics-informed neural network (PINN) to generate multi-step output predictions. The experimental results of the paper demonstrate that the hybrid input forecasting models achieve a higher log-likelihood and lower mean squared errors (MSE) compared to conventional STMs. Furthermore, the PINNs driven by the input forecasting models outperform their purely data-driven counterparts in terms of MSE and log-likelihood, exhibiting stronger generalization and forecasting performance across multiple test cases.
Traditional time series forecasting methods optimize for accuracy alone. This objective neglects temporal consistency, in other words, how consistently a model predicts the same future event as the forecast origin changes. We introduce the forecast accuracy and coherence score (forecast AC score for short) for measuring the quality of probabilistic multi-horizon forecasts in a way that accounts for both multi-horizon accuracy and stability. Our score additionally provides for user-specified weights to balance accuracy and consistency requirements. As an example application, we implement the score as a differentiable objective function for training seasonal ARIMA models and evaluate it on the M4 Hourly benchmark dataset. Results demonstrate substantial improvements over traditional maximum likelihood estimation. Our AC-optimized models achieve a 75\% reduction in forecast volatility for the same target timestamps while maintaining comparable or improved point forecast accuracy.




In this work, we introduce FLAME, a family of extremely lightweight and capable Time Series Foundation Models, which support both deterministic and probabilistic forecasting via generative probabilistic modeling, thus ensuring both efficiency and robustness. FLAME utilizes the Legendre Memory for strong generalization capabilities. Through adapting variants of Legendre Memory, i.e., translated Legendre (LegT) and scaled Legendre (LegS), in the Encoding and Decoding phases, FLAME can effectively capture the inherent inductive bias within data and make efficient long-range inferences. To enhance the accuracy of probabilistic forecasting while keeping efficient, FLAME adopts a Normalization Flow based forecasting head, which can model the arbitrarily intricate distributions over the forecasting horizon in a generative manner. Comprehensive experiments on well-recognized benchmarks, including TSFM-Bench and ProbTS, demonstrate the consistent state-of-the-art zero-shot performance of FLAME on both deterministic and probabilistic forecasting tasks.