This paper proposes the Trajectory-Information Exchange Multi-Bernoulli (T-IEMB) filter to estimate sets of alive and all trajectories in track-before-detect applications with generalised superpositional measurements. This measurement model has superpositional hidden variables which are mapped to the conditional mean and covariance of the measurement, enabling it to describe a broad range of measurement models. This paper also presents a Gaussian implementation of the T-IEMB filter, which performs the update by approximating the conditional moments of the measurement model, and admits a computationally light filtering solution. Simulation results for a non-Gaussian radar-based tracking scenario demonstrate the performance of two Gaussian T-IEMB implementations, which provide improved tracking performance compared to a state-of-the-art particle filter based solution for track-before-detect, at a reduced computational cost.
We introduce a unified framework for gentle robotic grasping that synergistically couples real-time friction estimation with adaptive grasp control. We propose a new particle filter-based method for real-time estimation of the friction coefficient using vision-based tactile sensors. This estimate is seamlessly integrated into a reactive controller that dynamically modulates grasp force to maintain a stable grip. The two processes operate synchronously in a closed-loop: the controller uses the current best estimate to adjust the force, while new tactile feedback from this action continuously refines the estimation. This creates a highly responsive and robust sensorimotor cycle. The reliability and efficiency of the complete framework are validated through extensive robotic experiments.
The contribution describes a pedestrian navigation approach designed to improve localization accuracy in urban environments where GNSS performance is degraded, a problem that is especially critical for blind or low-vision users who depend on precise guidance such as identifying the correct side of a street. To address GNSS limitations and the impracticality of camera-based visual positioning, the work proposes a particle filter based fusion of GNSS and inertial data that incorporates spatial priors from maps, such as impassable buildings and unlikely walking areas, functioning as a probabilistic form of map matching. Inertial localization is provided by the RoNIN machine learning method, and fusion with GNSS is achieved by weighting particles based on their consistency with GNSS estimates and uncertainty. The system was evaluated on six challenging walking routes in downtown San Francisco using three metrics related to sidewalk correctness and localization error. Results show that the fused approach (GNSS+RoNIN+PF) significantly outperforms GNSS only localization on most metrics, while inertial-only localization with particle filtering also surpasses GNSS alone for critical measures such as sidewalk assignment and across street error.
We design a variational state estimation (VSE) method that provides a closed-form Gaussian posterior of an underlying complex dynamical process from (noisy) nonlinear measurements. The complex process is model-free. That is, we do not have a suitable physics-based model characterizing the temporal evolution of the process state. The closed-form Gaussian posterior is provided by a recurrent neural network (RNN). The use of RNN is computationally simple in the inference phase. For learning the RNN, an additional RNN is used in the learning phase. Both RNNs help each other learn better based on variational inference principles. The VSE is demonstrated for a tracking application - state estimation of a stochastic Lorenz system (a benchmark process) using a 2-D camera measurement model. The VSE is shown to be competitive against a particle filter that knows the Lorenz system model and a recently proposed data-driven state estimation method that does not know the Lorenz system model.
Neural network models are increasingly used for state estimation in control and decision-making problems, yet it remains unclear to what extent they behave as principled filters in nonlinear dynamical systems. Unlike classical filters, which rely on explicit knowledge of system dynamics and noise models, neural estimators can be trained purely from data without access to the underlying system equations. In this work, we present a systematic empirical comparison between such model-free neural network models and classical filtering methods across multiple nonlinear scenarios. Our study evaluates Transformer-based models, state-space neural networks, and recurrent architectures alongside particle filters and nonlinear Kalman filters. The results show that neural models (in particular, state-space models (SSMs)) achieve state estimation performance that approaches strong nonlinear Kalman filters in nonlinear scenarios and outperform weaker classical baselines despite lacking access to system models, while also attaining substantially higher inference throughput.
Inference in non-linear continuous stochastic processes on trees is challenging, particularly when observations are sparse (leaf-only) and the topology is complex. Exact smoothing via Doob's $h$-transform is intractable for general non-linear dynamics, while particle-based methods degrade in high dimensions. We propose Neural Backward Filtering Forward Guiding (NBFFG), a unified framework for both discrete transitions and continuous diffusions. Our method constructs a variational posterior by leveraging an auxiliary linear-Gaussian process. This auxiliary process yields a closed-form backward filter that serves as a ``guide'', steering the generative path toward high-likelihood regions. We then learn a neural residual--parameterized as a normalizing flow or a controlled SDE--to capture the non-linear discrepancies. This formulation allows for an unbiased path-wise subsampling scheme, reducing the training complexity from tree-size dependent to path-length dependent. Empirical results show that NBFFG outperforms baselines on synthetic benchmarks, and we demonstrate the method on a high-dimensional inference task in phylogenetic analysis with reconstruction of ancestral butterfly wing shapes.
We study risk-sensitive planning under partial observability using the dynamic risk measure Iterated Conditional Value-at-Risk (ICVaR). A policy evaluation algorithm for ICVaR is developed with finite-time performance guarantees that do not depend on the cardinality of the action space. Building on this foundation, three widely used online planning algorithms--Sparse Sampling, Particle Filter Trees with Double Progressive Widening (PFT-DPW), and Partially Observable Monte Carlo Planning with Observation Widening (POMCPOW)--are extended to optimize the ICVaR value function rather than the expectation of the return. Our formulations introduce a risk parameter $α$, where $α= 1$ recovers standard expectation-based planning and $α< 1$ induces increasing risk aversion. For ICVaR Sparse Sampling, we establish finite-time performance guarantees under the risk-sensitive objective, which further enable a novel exploration strategy tailored to ICVaR. Experiments on benchmark POMDP domains demonstrate that the proposed ICVaR planners achieve lower tail risk compared to their risk-neutral counterparts.
Tactile sensing provides a promising sensing modality for object pose estimation in manipulation settings where visual information is limited due to occlusion or environmental effects. However, efficiently leveraging tactile data for estimation remains a challenge due to partial observability, with single observations corresponding to multiple possible contact configurations. This limits conventional estimation approaches largely tailored to vision. We propose to address these challenges by learning an inverse tactile sensor model using denoising diffusion. The model is conditioned on tactile observations from a distributed tactile sensor and trained in simulation using a geometric sensor model based on signed distance fields. Contact constraints are enforced during inference through single-step projection using distance and gradient information from the signed distance field. For online pose estimation, we integrate the inverse model with a particle filter through a proposal scheme that combines generated hypotheses with particles from the prior belief. Our approach is validated in simulated and real-world planar pose estimation settings, without access to visual data or tight initial pose priors. We further evaluate robustness to unmodeled contact and sensor dynamics for pose tracking in a box-pushing scenario. Compared to local sampling baselines, the inverse sensor model improves sampling efficiency and estimation accuracy while preserving multimodal beliefs across objects with varying tactile discriminability.
This paper introduces a novel methodology for generating controlled, multi-level dust concentrations in a highly cluttered environment representative of harsh, enclosed environments, such as underground mines, road tunnels, or collapsed buildings, enabling repeatable mm-wave propagation studies under severe electromagnetic constraints. We also present a new 4D mmWave radar dataset, augmented by camera and LiDAR, illustrating how dust particles and reflective surfaces jointly impact the sensing functionality. To address these challenges, we develop a threshold-based noise filtering framework leveraging key radar parameters (RCS, velocity, azimuth, elevation) to suppress ghost targets and mitigate strong multipath reflections at the raw data level. Building on the filtered point clouds, a cluster-level, rule-based classification pipeline exploits radar semantics-velocity, RCS, and volumetric spread-to achieve reliable, real-time pedestrian detection without extensive domainspecific training. Experimental results confirm that this integrated approach significantly enhances clutter mitigation, detection robustness, and overall system resilience in dust-laden mining environments.
Accurate localisation in planetary robotics enables the advanced autonomy required to support the increased scale and scope of future missions. The successes of the Ingenuity helicopter and multiple planetary orbiters lay the groundwork for future missions that use ground-aerial robotic teams. In this paper, we consider rovers using machine learning to localise themselves in a local aerial map using limited field-of-view monocular ground-view RGB images as input. A key consideration for machine learning methods is that real space data with ground-truth position labels suitable for training is scarce. In this work, we propose a novel method of localising rovers in an aerial map using cross-view-localising dual-encoder deep neural networks. We leverage semantic segmentation with vision foundation models and high volume synthetic data to bridge the domain gap to real images. We also contribute a new cross-view dataset of real-world rover trajectories with corresponding ground-truth localisation data captured in a planetary analogue facility, plus a high volume dataset of analogous synthetic image pairs. Using particle filters for state estimation with the cross-view networks allows accurate position estimation over simple and complex trajectories based on sequences of ground-view images.