Abstract:Neural network models are increasingly used for state estimation in control and decision-making problems, yet it remains unclear to what extent they behave as principled filters in nonlinear dynamical systems. Unlike classical filters, which rely on explicit knowledge of system dynamics and noise models, neural estimators can be trained purely from data without access to the underlying system equations. In this work, we present a systematic empirical comparison between such model-free neural network models and classical filtering methods across multiple nonlinear scenarios. Our study evaluates Transformer-based models, state-space neural networks, and recurrent architectures alongside particle filters and nonlinear Kalman filters. The results show that neural models (in particular, state-space models (SSMs)) achieve state estimation performance that approaches strong nonlinear Kalman filters in nonlinear scenarios and outperform weaker classical baselines despite lacking access to system models, while also attaining substantially higher inference throughput.
Abstract:Imitation Learning (IL) has proven highly effective for robotic and control tasks where manually designing reward functions or explicit controllers is infeasible. However, standard IL methods implicitly assume that the environment dynamics remain fixed between training and deployment. In practice, this assumption rarely holds where modeling inaccuracies, real-world parameter variations, and adversarial perturbations can all induce shifts in transition dynamics, leading to severe performance degradation. We address this challenge through Balance Equation-based Distributionally Robust Offline Imitation Learning, a framework that learns robust policies solely from expert demonstrations collected under nominal dynamics, without requiring further environment interaction. We formulate the problem as a distributionally robust optimization over an uncertainty set of transition models, seeking a policy that minimizes the imitation loss under the worst-case transition distribution. Importantly, we show that this robust objective can be reformulated entirely in terms of the nominal data distribution, enabling tractable offline learning. Empirical evaluations on continuous-control benchmarks demonstrate that our approach achieves superior robustness and generalization compared to state-of-the-art offline IL baselines, particularly under perturbed or shifted environments.
Abstract:Understanding the motion of articulated mechanical assemblies from static geometry remains a core challenge in 3D perception and design automation. Prior work on everyday articulated objects such as doors and laptops typically assumes simplified kinematic structures or relies on joint annotations. However, in mechanical assemblies like gears, motion arises from geometric coupling, through meshing teeth or aligned axes, making it difficult for existing methods to reason about relational motion from geometry alone. To address this gap, we introduce MechBench, a benchmark dataset of 693 diverse synthetic gear assemblies with part-wise ground-truth motion trajectories. MechBench provides a structured setting to study coupled motion, where part dynamics are induced by contact and transmission rather than predefined joints. Building on this, we propose DYNAMO, a dependency-aware neural model that predicts per-part SE(3) motion trajectories directly from segmented CAD point clouds. Experiments show that DYNAMO outperforms strong baselines, achieving accurate and temporally consistent predictions across varied gear configurations. Together, MechBench and DYNAMO establish a novel systematic framework for data-driven learning of coupled mechanical motion in CAD assemblies.
Abstract:Recent advancements in reinforcement learning (RL) have leveraged neural networks to achieve state-of-the-art performance across various control tasks. However, these successes often come at the cost of significant computational resources, as training deep neural networks requires substantial time and data. In this paper, we introduce an actor-critic algorithm that utilizes randomized neural networks to drastically reduce computational costs while maintaining strong performance. Despite its simple architecture, our method effectively solves a range of control problems, including the locomotion control of a highly dynamic 12-motor quadruped robot, and achieves results comparable to leading algorithms such as Proximal Policy Optimization (PPO). Notably, our approach does not outperform other algorithms in terms of sample efficnency but rather in terms of wall-clock training time. That is, although our algorithm requires more timesteps to converge to an optimal policy, the actual time required for training turns out to be lower.
Abstract:Post-training of LLMs with RLHF, and subsequently preference optimization algorithms such as DPO, IPO, etc., made a big difference in improving human alignment. However, all such techniques can only work with a single (human) objective. In practice, human users have multiple objectives, such as helpfulness and harmlessness, and there is no natural way to aggregate them into a single objective. In this paper, we address the multi-objective preference-alignment problem, where a policy must optimize several, potentially conflicting, objectives. We introduce the Multi-Objective Preference Optimization (MOPO) algorithm, which frames alignment as a constrained KL-regularized optimization: the primary objective is maximized while secondary objectives are lower-bounded by tunable safety thresholds. Unlike prior work, MOPO operates directly on pairwise preference data, requires no point-wise reward assumption, and avoids heuristic prompt-context engineering. The method recovers policies on the Pareto front whenever the front is attainable; practically, it reduces to simple closed-form iterative updates suitable for large-scale training. On synthetic benchmarks with diverse canonical preference structures, we show that MOPO approximates the Pareto front. When fine-tuning a 1.3B-parameter language model on real-world human-preference datasets, MOPO attains higher rewards and yields policies that Pareto-dominate baselines; ablation studies confirm optimization stability and robustness to hyperparameters.




Abstract:A major challenge in aligning large language models (LLMs) with human preferences is the issue of distribution shift. LLM alignment algorithms rely on static preference datasets, assuming that they accurately represent real-world user preferences. However, user preferences vary significantly across geographical regions, demographics, linguistic patterns, and evolving cultural trends. This preference distribution shift leads to catastrophic alignment failures in many real-world applications. We address this problem using the principled framework of distributionally robust optimization, and develop two novel distributionally robust direct preference optimization (DPO) algorithms, namely, Wasserstein DPO (WDPO) and Kullback-Leibler DPO (KLDPO). We characterize the sample complexity of learning the optimal policy parameters for WDPO and KLDPO. Moreover, we propose scalable gradient descent-style learning algorithms by developing suitable approximations for the challenging minimax loss functions of WDPO and KLDPO. Our empirical experiments demonstrate the superior performance of WDPO and KLDPO in substantially improving the alignment when there is a preference distribution shift.




Abstract:We address the problem of best policy identification in preference-based reinforcement learning (PbRL), where learning occurs from noisy binary preferences over trajectory pairs rather than explicit numerical rewards. This approach is useful for post-training optimization of generative AI models during multi-turn user interactions, where preference feedback is more robust than handcrafted reward models. In this setting, learning is driven by both an offline preference dataset -- collected from a rater of unknown 'competence' -- and online data collected with pure exploration. Since offline datasets may exhibit out-of-distribution (OOD) biases, principled online data collection is necessary. To address this, we propose Posterior Sampling for Preference Learning ($\mathsf{PSPL}$), a novel algorithm inspired by Top-Two Thompson Sampling, that maintains independent posteriors over the true reward model and transition dynamics. We provide the first theoretical guarantees for PbRL in this setting, establishing an upper bound on the simple Bayesian regret of $\mathsf{PSPL}$. Since the exact algorithm can be computationally impractical, we also provide an approximate version that outperforms existing baselines.




Abstract:Imitation learning (IL) is notably effective for robotic tasks where directly programming behaviors or defining optimal control costs is challenging. In this work, we address a scenario where the imitator relies solely on observed behavior and cannot make environmental interactions during learning. It does not have additional supplementary datasets beyond the expert's dataset nor any information about the transition dynamics. Unlike state-of-the-art (SOTA) IL methods, this approach tackles the limitations of conventional IL by operating in a more constrained and realistic setting. Our method uses the Markov balance equation and introduces a novel conditional density estimation-based imitation learning framework. It employs conditional normalizing flows for transition dynamics estimation and aims at satisfying a balance equation for the environment. Through a series of numerical experiments on Classic Control and MuJoCo environments, we demonstrate consistently superior empirical performance compared to many SOTA IL algorithms.
Abstract:In this paper, we present the $\texttt{e-COP}$ algorithm, the first policy optimization algorithm for constrained Reinforcement Learning (RL) in episodic (finite horizon) settings. Such formulations are applicable when there are separate sets of optimization criteria and constraints on a system's behavior. We approach this problem by first establishing a policy difference lemma for the episodic setting, which provides the theoretical foundation for the algorithm. Then, we propose to combine a set of established and novel solution ideas to yield the $\texttt{e-COP}$ algorithm that is easy to implement and numerically stable, and provide a theoretical guarantee on optimality under certain scaling assumptions. Through extensive empirical analysis using benchmarks in the Safety Gym suite, we show that our algorithm has similar or better performance than SoTA (non-episodic) algorithms adapted for the episodic setting. The scalability of the algorithm opens the door to its application in safety-constrained Reinforcement Learning from Human Feedback for Large Language or Diffusion Models.
Abstract:Reinforcement Learning with Human Feedback (RLHF) is at the core of fine-tuning methods for generative AI models for language and images. Such feedback is often sought as rank or preference feedback from human raters, as opposed to eliciting scores since the latter tends to be very noisy. On the other hand, RL theory and algorithms predominantly assume that a reward feedback is available. In particular, approaches for online learning that can be helpful in adaptive data collection via active learning cannot incorporate offline preference data. In this paper, we adopt a finite-armed linear bandit model as a prototypical model of online learning. We consider an offline preference dataset to be available generated by an expert of unknown 'competence'. We propose $\texttt{warmPref-PS}$, a posterior sampling algorithm for online learning that can be warm-started with an offline dataset with noisy preference feedback. We show that by modeling the competence of the expert that generated it, we are able to use such a dataset most effectively. We support our claims with novel theoretical analysis of its Bayesian regret, as well as extensive empirical evaluation of an approximate algorithm which performs substantially better (almost 25 to 50% regret reduction in our studies) as compared to baselines.