Abstract:The research topic is: data-driven Bayesian state estimation with compressed measurement (BSCM) of model-free process, say for a (causal) tracking application. The dimension of the temporal measurement vector is lower than the dimension of the temporal state vector to be estimated. Hence the state estimation problem is an underdetermined inverse problem. The state-space-model (SSM) of the underlying dynamical process is assumed to be unknown and hence, we use the terminology 'model-free process'. In absence of the SSM, we can not employ traditional model-driven methods like Kalman Filter (KF) and Particle Filter (PF) and instead require data-driven methods. We first experimentally show that two existing unsupervised learning-based data-driven methods fail to address the BSCM problem for model-free process; they are data-driven nonlinear state estimation (DANSE) method and deep Markov model (DMM) method. The unsupervised learning uses unlabelled data comprised of only noisy measurements. While DANSE provides a good predictive performance to model the temporal measurement data as time-series, its unsupervised learning lacks a regularization for state estimation. We then investigate use of a semi-supervised learning approach, and develop a semi-supervised learning-based DANSE method, referred to as SemiDANSE. In the semi-supervised learning, we use a limited amount of labelled data along-with a large amount of unlabelled data, and that helps to bring the desired regularization for BSCM problem in the absence of SSM. The labelled data means pairwise measurement-and-state data. Using three chaotic dynamical systems (or processes) with nonlinear SSMs as benchmark, we show that the data-driven SemiDANSE provides competitive performance for BSCM against three SSM-informed methods - a hybrid method called KalmanNet, and two traditional model-driven methods called extended KF and unscented KF.
Abstract:We consider reconstruction of an ambient signal in a compressed sensing (CS) setup where the ambient signal has a neural network based generative model. The generative model has a sparse-latent input and we refer to the generated ambient signal as generative sparse-latent signal (GSL). The proposed sparsity inducing reconstruction algorithm is inherently non-convex, and we show that a gradient based search provides a good reconstruction performance. We evaluate our proposed algorithm using simulated data.
Abstract:We address the tasks of Bayesian state estimation and forecasting for a model-free process in an unsupervised learning setup. In the article, we propose DANSE -- a Data-driven Nonlinear State Estimation method. DANSE provides a closed-form posterior of the state of the model-free process, given linear measurements of the state. In addition, it provides a closed-form posterior for forecasting. A data-driven recurrent neural network (RNN) is used in DANSE to provide the parameters of a prior of the state. The prior depends on the past measurements as input, and then we find the closed-form posterior of the state using the current measurement as input. The data-driven RNN captures the underlying non-linear dynamics of the model-free process. The training of DANSE, mainly learning the parameters of the RNN, is executed using an unsupervised learning approach. In unsupervised learning, we have access to a training dataset comprising only a set of measurement data trajectories, but we do not have any access to the state trajectories. Therefore, DANSE does not have access to state information in the training data and can not use supervised learning. Using simulated linear and non-linear process models (Lorenz attractor and Chen attractor), we evaluate the unsupervised learning-based DANSE. We show that the proposed DANSE, without knowledge of the process model and without supervised learning, provides a competitive performance against model-driven methods, such as the Kalman filter (KF), extended KF (EKF), unscented KF (UKF), and a recently proposed hybrid method called KalmanNet.
Abstract:In recent years, there has been a heightened consensus within academia and in the public discourse that Social Media Platforms (SMPs), amplify the spread of hateful and negative sentiment content. Researchers have identified how hateful content, political propaganda, and targeted messaging contributed to real-world harms including insurrections against democratically elected governments, genocide, and breakdown of social cohesion due to heightened negative discourse towards certain communities in parts of the world. To counter these issues, SMPs have created semi-automated systems that can help identify toxic speech. In this paper we analyse the statistical distribution of hateful and negative sentiment contents within a representative Facebook dataset (n= 604,703) scrapped through 648 public Facebook pages which identify themselves as proponents (and followers) of far-right Hindutva actors. These pages were identified manually using keyword searches on Facebook and on CrowdTangleand classified as far-right Hindutva pages based on page names, page descriptions, and discourses shared on these pages. We employ state-of-the-art, open-source XLM-T multilingual transformer-based language models to perform sentiment and hate speech analysis of the textual contents shared on these pages over a period of 5.5 years. The result shows the statistical distributions of the predicted sentiment and the hate speech labels; top actors, and top page categories. We further discuss the benchmark performances and limitations of these pre-trained language models.
Abstract:Accurate and robust extrinsic calibration is necessary for deploying autonomous systems which need multiple sensors for perception. In this paper, we present a robust system for real-time extrinsic calibration of multiple lidars in vehicle base frame without the need for any fiducial markers or features. We base our approach on matching absolute GNSS and estimated lidar poses in real-time. Comparing rotation components allows us to improve the robustness of the solution than traditional least-square approach comparing translation components only. Additionally, instead of comparing all corresponding poses, we select poses comprising maximum mutual information based on our novel observability criteria. This allows us to identify a subset of the poses helpful for real-time calibration. We also provide stopping criteria for ensuring calibration completion. To validate our approach extensive tests were carried out on data collected using Scania test vehicles (7 sequences for a total of ~ 6.5 Km). The results presented in this paper show that our approach is able to accurately determine the extrinsic calibration for various combinations of sensor setups.
Abstract:We present a robust system for state estimation that fuses measurements from multiple lidars and inertial sensors with GNSS data. To initiate the method, we use the prior GNSS pose information. We then perform incremental motion in real-time, which produces robust motion estimates in a global frame by fusing lidar and IMU signals with GNSS translation components using a factor graph framework. We also propose methods to account for signal loss with a novel synchronization and fusion mechanism. To validate our approach extensive tests were carried out on data collected using Scania test vehicles (5 sequences for a total of ~ 7 Km). From our evaluations, we show an average improvement of 61% in relative translation and 42% rotational error compared to a state-of-the-art estimator fusing a single lidar/inertial sensor pair.
Abstract:We propose a greedy algorithm to select $N$ important features among $P$ input features for a non-linear prediction problem. The features are selected one by one sequentially, in an iterative loss minimization procedure. We use neural networks as predictors in the algorithm to compute the loss and hence, we refer to our method as neural greedy pursuit (NGP). NGP is efficient in selecting $N$ features when $N \ll P$, and it provides a notion of feature importance in a descending order following the sequential selection procedure. We experimentally show that NGP provides better performance than several feature selection methods such as DeepLIFT and Drop-one-out loss. In addition, we experimentally show a phase transition behavior in which perfect selection of all $N$ features without false positives is possible when the training data size exceeds a threshold.
Abstract:We demonstrate a multi-lidar calibration framework for large mobile platforms that jointly calibrate the extrinsic parameters of non-overlapping Field-of-View (FoV) lidar sensors, without the need for any external calibration aid. The method starts by estimating the pose of each lidar in its corresponding sensor frame in between subsequent timestamps. Since the pose estimates from the lidars are not necessarily synchronous, we first align the poses using a Dual Quaternion (DQ) based Screw Linear Interpolation. Afterward, a Hand-Eye based calibration problem is solved using the DQ-based formulation to recover the extrinsics. Furthermore, we verify the extrinsics by matching chosen lidar semantic features, obtained by projecting the lidar data into the camera perspective after time alignment using vehicle kinematics. Experimental results on the data collected from a Scania vehicle [$\sim$ 1 Km sequence] demonstrate the ability of our approach to obtain better calibration parameters than the provided vehicle CAD model calibration parameters. This setup can also be scaled to any combination of multiple lidars.
Abstract:Reliable knowledge of road boundaries is critical for autonomous vehicle navigation. We propose a robust curb detection and filtering technique based on the fusion of camera semantics and dense lidar point clouds. The lidar point clouds are collected by fusing multiple lidars for robust feature detection. The camera semantics are based on a modified EfficientNet architecture which is trained with labeled data collected from onboard fisheye cameras. The point clouds are associated with the closest curb segment with $L_2$-norm analysis after projecting into the image space with the fisheye model projection. Next, the selected points are clustered using unsupervised density-based spatial clustering to detect different curb regions. As new curb points are detected in consecutive frames they are associated with the existing curb clusters using temporal reachability constraints. If no reachability constraints are found a new curb cluster is formed from these new points. This ensures we can detect multiple curbs present in road segments consisting of multiple lanes if they are in the sensors' field of view. Finally, Delaunay filtering is applied for outlier removal and its performance is compared to traditional RANSAC-based filtering. An objective evaluation of the proposed solution is done using a high-definition map containing ground truth curb points obtained from a commercial map supplier. The proposed system has proven capable of detecting curbs of any orientation in complex urban road scenarios comprising straight roads, curved roads, and intersections with traffic isles.
Abstract:Stochastic nonlinear dynamical systems are ubiquitous in modern, real-world applications. Yet, estimating the unknown parameters of stochastic, nonlinear dynamical models remains a challenging problem. The majority of existing methods employ maximum likelihood or Bayesian estimation. However, these methods suffer from some limitations, most notably the substantial computational time for inference coupled with limited flexibility in application. In this work, we propose DeepBayes estimators that leverage the power of deep recurrent neural networks in learning an estimator. The method consists of first training a recurrent neural network to minimize the mean-squared estimation error over a set of synthetically generated data using models drawn from the model set of interest. The a priori trained estimator can then be used directly for inference by evaluating the network with the estimation data. The deep recurrent neural network architectures can be trained offline and ensure significant time savings during inference. We experiment with two popular recurrent neural networks -- long short term memory network (LSTM) and gated recurrent unit (GRU). We demonstrate the applicability of our proposed method on different example models and perform detailed comparisons with state-of-the-art approaches. We also provide a study on a real-world nonlinear benchmark problem. The experimental evaluations show that the proposed approach is asymptotically as good as the Bayes estimator.