Abstract:Bayesian inference with Markov Chain Monte Carlo (MCMC) is challenging when the likelihood function is irregular and expensive to compute. We explore several sampling algorithms that make use of subset evaluations to reduce computational overhead. We adapt the subset samplers for this setting where gradient information is not available or is unreliable. To achieve this, we introduce data-driven proxies in place of Taylor expansions and define a novel computation-cost aware adaptive controller. We undertake an extensive evaluation for a challenging disease modelling task and a configurable task with similar irregularity in the likelihood surface. We find our improved version of Hierarchical Importance with Nested Training Samples (HINTS), with adaptive proposals and a data-driven proxy, obtains the best sampling error in a fixed computational budget. We conclude that subset evaluations can provide cheap and naturally-tempered exploration, while a data-driven proxy can pre-screen proposals successfully in explored regions of the state space. These two elements combine through hierarchical delayed acceptance to achieve efficient, exact sampling.
Abstract:Understanding the confidence with which a machine learning model classifies an input datum is an important, and perhaps under-investigated, concept. In this paper, we propose a new calibration metric, the Entropic Calibration Difference (ECD). Based on existing research in the field of state estimation, specifically target tracking (TT), we show how ECD may be applied to binary classification machine learning models. We describe the relative importance of under- and over-confidence and how they are not conflated in the TT literature. Indeed, our metric distinguishes under- from over-confidence. We consider this important given that algorithms that are under-confident are likely to be 'safer' than algorithms that are over-confident, albeit at the expense of also being over-cautious and so statistically inefficient. We demonstrate how this new metric performs on real and simulated data and compare with other metrics for machine learning model probability calibration, including the Expected Calibration Error (ECE) and its signed counterpart, the Expected Signed Calibration Error (ESCE).