What is Network Pruning? Network pruning is a popular approach to reduce a heavy network to obtain a lightweight form by removing redundancy in the heavy network. In this approach, a complex over-parameterized network is first trained, then pruned based on some criteria, and finally fine-tuned to achieve comparable performance with reduced parameters.
Papers and Code
Sep 10, 2025
Abstract:Convolutional Neural Networks (CNNs) have achieved significant breakthroughs in various fields. However, these advancements have led to a substantial increase in the complexity and size of these networks. This poses a challenge when deploying large and complex networks on edge devices. Consequently, model compression has emerged as a research field aimed at reducing the size and complexity of CNNs. One prominent technique in model compression is model pruning. This paper will present a new technique of pruning that combines both channel and layer pruning in what is called a "hybrid pruning framework". Inspired by EfficientNet, a renowned CNN architecture known for scaling up networks from both channel and layer perspectives, this hybrid approach applies the same principles but in reverse, where it scales down the network through pruning. Experiments on the hybrid approach demonstrated a notable decrease in the overall complexity of the model, with only a minimal reduction in accuracy compared to the baseline model. This complexity reduction translates into reduced latency when deploying the pruned models on an NVIDIA JETSON TX2 embedded AI device.
* 16 pages, 4 figures, the European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases
Via

Sep 11, 2025
Abstract:In-loop filtering (ILF) is a key technology in video coding standards to reduce artifacts and enhance visual quality. Recently, neural network-based ILF schemes have achieved remarkable coding gains, emerging as a powerful candidate for next-generation video coding standards. However, the use of deep neural networks (DNN) brings significant computational and time complexity or high demands for dedicated hardware, making it challenging for general use. To address this limitation, we study a practical ILF solution by adopting look-up tables (LUTs). After training a DNN with a restricted reference range for ILF, all possible inputs are traversed, and the output values of the DNN are cached into LUTs. During the coding process, the filtering process is performed by simply retrieving the filtered pixel through locating the input pixels and interpolating between the cached values, instead of relying on heavy inference computations. In this paper, we propose a universal LUT-based ILF framework, termed LUT-ILF++. First, we introduce the cooperation of multiple kinds of filtering LUTs and propose a series of customized indexing mechanisms to enable better filtering reference perception with limited storage consumption. Second, we propose the cross-component indexing mechanism to enable the filtering of different color components jointly. Third, in order to make our solution practical for coding uses, we propose the LUT compaction scheme to enable the LUT pruning, achieving a lower storage cost of the entire solution. The proposed framework is implemented in the VVC reference software. Experimental results show that the proposed framework achieves on average 0.82%/2.97%/1.63% and 0.85%/4.11%/2.06% bitrate reduction for common test sequences, under the AI and RA configurations, respectively. Compared to DNN-based solutions, our proposed solution has much lower time complexity and storage cost.
* 25 pages
Via

Sep 08, 2025
Abstract:Transformers have been successfully applied in the field of video-based 3D human pose estimation. However, the high computational costs of these video pose transformers (VPTs) make them impractical on resource-constrained devices. In this paper, we present a hierarchical plug-and-play pruning-and-recovering framework, called Hierarchical Hourglass Tokenizer (H$_{2}$OT), for efficient transformer-based 3D human pose estimation from videos. H$_{2}$OT begins with progressively pruning pose tokens of redundant frames and ends with recovering full-length sequences, resulting in a few pose tokens in the intermediate transformer blocks and thus improving the model efficiency. It works with two key modules, namely, a Token Pruning Module (TPM) and a Token Recovering Module (TRM). TPM dynamically selects a few representative tokens to eliminate the redundancy of video frames, while TRM restores the detailed spatio-temporal information based on the selected tokens, thereby expanding the network output to the original full-length temporal resolution for fast inference. Our method is general-purpose: it can be easily incorporated into common VPT models on both seq2seq and seq2frame pipelines while effectively accommodating different token pruning and recovery strategies. In addition, our H$_{2}$OT reveals that maintaining the full pose sequence is unnecessary, and a few pose tokens of representative frames can achieve both high efficiency and estimation accuracy. Extensive experiments on multiple benchmark datasets demonstrate both the effectiveness and efficiency of the proposed method. Code and models are available at https://github.com/NationalGAILab/HoT.
* Accepted by TPAMI 2025, Open Sourced. arXiv admin note: substantial
text overlap with arXiv:2311.12028
Via

Sep 05, 2025
Abstract:Deep learning models, especially convolutional neural networks (CNNs), have shown considerable promise for biomedical signals such as EEG-based seizure detection. However, these models come with challenges, primarily due to their size and compute requirements in environments where real-time detection or limited resources are available. In this study, we present a lightweight one-dimensional CNN model with structured pruning to improve efficiency and reliability. The model was trained with mild early stopping to address possible overfitting, achieving an accuracy of 92.78% and a macro-F1 score of 0.8686. Structured pruning of the baseline CNN involved removing 50% of the convolutional kernels based on their importance to model predictions. Surprisingly, after pruning the weights and memory by 50%, the new network was still able to maintain predictive capabilities, while modestly increasing precision to 92.87% and improving the macro-F1 score to 0.8707. Overall, we present a convincing case that structured pruning removes redundancy, improves generalization, and, in combination with mild early stopping, achieves a promising way forward to improve seizure detection efficiency and reliability, which is clear motivation for resource-limited settings.
Via

Sep 04, 2025
Abstract:Deep Neural Networks (DNNs) have achieved significant advances in a wide range of applications. However, their deployment on resource-constrained devices remains a challenge due to the large number of layers and parameters, which result in considerable computational and memory demands. To address this issue, pruning and quantization are two widely used compression techniques, commonly applied individually in most studies to reduce model size and enhance processing speed. Nevertheless, combining these two techniques can yield even greater compression benefits. Effectively integrating pruning and quantization to harness their complementary advantages poses a challenging task, primarily due to their potential impact on model accuracy and the complexity of jointly optimizing both processes. In this paper, we propose two approaches that integrate similarity-based filter pruning with Adaptive Power-of-Two (APoT) quantization to achieve higher compression efficiency while preserving model accuracy. In the first approach, pruning and quantization are applied simultaneously during training. In the second approach, pruning is performed first to remove less important parameters, followed by quantization of the pruned model using low-bit representations. Experimental results demonstrate that our proposed approaches achieve effective model compression with minimal accuracy degradation, making them well-suited for deployment on devices with limited computational resources.
Via

Sep 03, 2025
Abstract:Real world images frequently exhibit multiple overlapping biases, including textures, watermarks, gendered makeup, scene object pairings, etc. These biases collectively impair the performance of modern vision models, undermining both their robustness and fairness. Addressing these biases individually proves inadequate, as mitigating one bias often permits or intensifies others. We tackle this multi bias problem with Generalized Multi Bias Mitigation (GMBM), a lean two stage framework that needs group labels only while training and minimizes bias at test time. First, Adaptive Bias Integrated Learning (ABIL) deliberately identifies the influence of known shortcuts by training encoders for each attribute and integrating them with the main backbone, compelling the classifier to explicitly recognize these biases. Then Gradient Suppression Fine Tuning prunes those very bias directions from the backbone's gradients, leaving a single compact network that ignores all the shortcuts it just learned to recognize. Moreover we find that existing bias metrics break under subgroup imbalance and train test distribution shifts, so we introduce Scaled Bias Amplification (SBA): a test time measure that disentangles model induced bias amplification from distributional differences. We validate GMBM on FB CMNIST, CelebA, and COCO, where we boost worst group accuracy, halve multi attribute bias amplification, and set a new low in SBA even as bias complexity and distribution shifts intensify, making GMBM the first practical, end to end multibias solution for visual recognition. Project page: http://visdomlab.github.io/GMBM/
* ECAI 2025 (28th European Conference on Artificial Intelligence)
Via

Aug 29, 2025
Abstract:Spiking neural networks (SNNs) are artificial neural networks based on simulated biological neurons and have attracted much attention in recent artificial intelligence technology studies. The dendrites in biological neurons have efficient information processing ability and computational power; however, the neurons of SNNs rarely match the complex structure of the dendrites. Inspired by the nonlinear structure and highly sparse properties of neuronal dendrites, in this study, we propose an efficient, lightweight SNN method with nonlinear pruning and dendritic integration (NSPDI-SNN). In this method, we introduce nonlinear dendritic integration (NDI) to improve the representation of the spatiotemporal information of neurons. We implement heterogeneous state transition ratios of dendritic spines and construct a new and flexible nonlinear synaptic pruning (NSP) method to achieve the high sparsity of SNN. We conducted systematic experiments on three benchmark datasets (DVS128 Gesture, CIFAR10-DVS, and CIFAR10) and extended the evaluation to two complex tasks (speech recognition and reinforcement learning-based maze navigation task). Across all tasks, NSPDI-SNN consistently achieved high sparsity with minimal performance degradation. In particular, our method achieved the best experimental results on all three event stream datasets. Further analysis showed that NSPDI significantly improved the efficiency of synaptic information transfer as sparsity increased. In conclusion, our results indicate that the complex structure and nonlinear computation of neuronal dendrites provide a promising approach for developing efficient SNN methods.
* 13 pages, 8 figures, 5 tables; This manuscript has been submitted for
possible pulication
Via

Aug 24, 2025
Abstract:Although the Segment Anything Model (SAM) has advanced medical image segmentation, its Bayesian adaptation for uncertainty-aware segmentation remains hindered by three key issues: (1) instability in Bayesian fine-tuning of large pre-trained SAMs; (2) high computation cost due to SAM's massive parameters; (3) SAM's black-box design limits interpretability. To overcome these, we propose E-BayesSAM, an efficient framework combining Token-wise Variational Bayesian Inference (T-VBI) for efficienty Bayesian adaptation and Self-Optimizing Kolmogorov-Arnold Network (SO-KAN) for improving interpretability. T-VBI innovatively reinterprets SAM's output tokens as dynamic probabilistic weights and reparameterizes them as latent variables without auxiliary training, enabling training-free VBI for uncertainty estimation. SO-KAN improves token prediction with learnable spline activations via self-supervised learning, providing insight to prune redundant tokens to boost efficiency and accuracy. Experiments on five ultrasound datasets demonstrated that E-BayesSAM achieves: (i) real-time inference (0.03s/image), (ii) superior segmentation accuracy (average DSC: Pruned E-BayesSAM's 89.0\% vs. E-BayesSAM's 88.0% vs. MedSAM's 88.3%), and (iii) identification of four critical tokens governing SAM's decisions. By unifying efficiency, reliability, and interpretability, E-BayesSAM bridges SAM's versatility with clinical needs, advancing deployment in safety-critical medical applications. The source code is available at https://github.com/mp31192/E-BayesSAM.
* Accepted by MICCAI 2025
Via

Aug 19, 2025
Abstract:With the reduced hardware costs of omnidirectional cameras and the proliferation of various extended reality applications, more and more $360^\circ$ videos are being captured. To fully unleash their potential, advanced video analytics is expected to extract actionable insights and situational knowledge without blind spots from the videos. In this paper, we present OmniSense, a novel edge-assisted framework for online immersive video analytics. OmniSense achieves both low latency and high accuracy, combating the significant computation and network resource challenges of analyzing $360^\circ$ videos. Motivated by our measurement insights into $360^\circ$ videos, OmniSense introduces a lightweight spherical region of interest (SRoI) prediction algorithm to prune redundant information in $360^\circ$ frames. Incorporating the video content and network dynamics, it then smartly scales vision models to analyze the predicted SRoIs with optimized resource utilization. We implement a prototype of OmniSense with commodity devices and evaluate it on diverse real-world collected $360^\circ$ videos. Extensive evaluation results show that compared to resource-agnostic baselines, it improves the accuracy by $19.8\%$ -- $114.6\%$ with similar end-to-end latencies. Meanwhile, it hits $2.0\times$ -- $2.4\times$ speedups while keeping the accuracy on par with the highest accuracy of baselines.
* 10 pages; Accepted by INFOCOM'23
Via

Aug 20, 2025
Abstract:We introduce EffiFusion-GAN (Efficient Fusion Generative Adversarial Network), a lightweight yet powerful model for speech enhancement. The model integrates depthwise separable convolutions within a multi-scale block to capture diverse acoustic features efficiently. An enhanced attention mechanism with dual normalization and residual refinement further improves training stability and convergence. Additionally, dynamic pruning is applied to reduce model size while maintaining performance, making the framework suitable for resource-constrained environments. Experimental evaluation on the public VoiceBank+DEMAND dataset shows that EffiFusion-GAN achieves a PESQ score of 3.45, outperforming existing models under the same parameter settings.
Via
