Network pruning is a popular approach to reduce a heavy network to obtain a lightweight form by removing redundancy in the heavy network. In this approach, a complex over-parameterized network is first trained, then pruned based on some criteria, and finally fine-tuned to achieve comparable performance with reduced parameters.
Recent works have indicated redundancy across transformer blocks, prompting the research of depth compression to prune less crucial blocks. However, current ways of entire-block pruning suffer from risks of discarding meaningful cues learned in those blocks, leading to substantial performance degradation. As another line of model compression, channel pruning can better preserve performance, while it cannot reduce model depth and is challenged by inconsistent pruning ratios for individual layers. To pursue better model compression and acceleration, this paper proposes \textbf{FlattenGPT}, a novel way to detect and reduce depth-wise redundancies. By flatting two adjacent blocks into one, it compresses the network depth, meanwhile enables more effective parameter redundancy detection and removal. FlattenGPT allows to preserve the knowledge learned in all blocks, and remains consistent with the original transformer architecture. Extensive experiments demonstrate that FlattenGPT enhances model efficiency with a decent trade-off to performance. It outperforms existing pruning methods in both zero-shot accuracies and WikiText-2 perplexity across various model types and parameter sizes. On LLaMA-2/3 and Qwen-1.5 models, FlattenGPT retains 90-96\% of zero-shot performance with a compression ratio of 20\%. It also outperforms other pruning methods in accelerating LLM inference, making it promising for enhancing the efficiency of transformers.
While large language models (LLMs) demonstrate impressive performance across various tasks, their deployment in real-world scenarios is still constrained by high computational demands. Layer-wise pruning, a commonly employed strategy to mitigate inference costs, can partially address this challenge. However, existing approaches generally depend on static heuristic rules and fail to account for the interdependencies among layers, thereby limiting the effectiveness of the pruning process. To this end, this paper proposes a game-theoretic framework that formulates layer pruning as a cooperative game in which each layer acts as a player and model performance serves as the utility. As computing exact Shapley values is computationally infeasible for large language models (LLMs), we propose using a lightweight surrogate network to estimate layer-wise marginal contributions. This network can predict LLM performance for arbitrary layer combinations at a low computational cost. Additionally, we employ stratified Monte Carlo mask sampling to further reduce the cost of Sharpley value estimation. This approach captures inter-layer dependencies and dynamically identifies critical layers for pruning. Extensive experiments demonstrate the consistent superiority of our method in terms of perplexity and zero-shot accuracy, achieving more efficient and effective layer-wise pruning for large language models.
Pruning at Initialisation methods discover sparse, trainable subnetworks before training, but their theoretical mechanisms remain elusive. Existing analyses are often limited to finite-width statistics, lacking a rigorous characterisation of the global sparsity patterns that emerge as networks grow large. In this work, we connect discrete pruning heuristics to graph limit theory via graphons, establishing the graphon limit of PaI masks. We introduce a Factorised Saliency Model that encompasses popular pruning criteria and prove that, under regularity conditions, the discrete masks generated by these algorithms converge to deterministic bipartite graphons. This limit framework establishes a novel topological taxonomy for sparse networks: while unstructured methods (e.g., Random, Magnitude) converge to homogeneous graphons representing uniform connectivity, data-driven methods (e.g., SNIP, GraSP) converge to heterogeneous graphons that encode implicit feature selection. Leveraging this continuous characterisation, we derive two fundamental theoretical results: (i) a Universal Approximation Theorem for sparse networks that depends only on the intrinsic dimension of active coordinate subspaces; and (ii) a Graphon-NTK generalisation bound demonstrating how the limit graphon modulates the kernel geometry to align with informative features. Our results transform the study of sparse neural networks from combinatorial graph problems into a rigorous framework of continuous operators, offering a new mechanism for analysing expressivity and generalisation in sparse neural networks.
Parameter sharing is a key strategy in multi-agent reinforcement learning (MARL) for improving scalability, yet conventional fully shared architectures often collapse into homogeneous behaviors. Recent methods introduce diversity through clustering, pruning, or masking, but typically compromise resource efficiency. We propose Prism, a parameter sharing framework that induces inter-agent diversity by representing shared networks in the spectral domain via singular value decomposition (SVD). All agents share the singular vector directions while learning distinct spectral masks on singular values. This mechanism encourages inter-agent diversity and preserves scalability. Extensive experiments on both homogeneous (LBF, SMACv2) and heterogeneous (MaMuJoCo) benchmarks show that Prism achieves competitive performance with superior resource efficiency.
Static sparse training is a promising route to efficient learning by committing to a fixed mask pattern, yet the constrained structure reduces robustness. Early pruning decisions can lock the network into a brittle structure that is difficult to escape, especially in deep reinforcement learning (RL) where the evolving policy continually shifts the training distribution. We propose Topology-Aware Revival (TAR), a lightweight one-shot post-pruning procedure that improves static sparsity without dynamic rewiring. After static pruning, TAR performs a single revival step by allocating a small reserve budget across layers according to topology needs, randomly uniformly reactivating a few previously pruned connections within each layer, and then keeping the resulting connectivity fixed for the remainder of training. Across multiple continuous-control tasks with SAC and TD3, TAR improves final return over static sparse baselines by up to +37.9% and also outperforms dynamic sparse training baselines with a median gain of +13.5%.
Our theoretical understanding of neural networks is lagging behind their empirical success. One of the important unexplained phenomena is why and how, during the process of training with gradient descent, the theoretical capacity of neural networks is reduced to an effective capacity that fits the task. We here investigate the mechanism by which gradient descent achieves this through analyzing the learning dynamics at the level of individual neurons in single hidden layer ReLU networks. We identify three dynamical principles -- mutual alignment, unlocking and racing -- that together explain why we can often successfully reduce capacity after training through the merging of equivalent neurons or the pruning of low norm weights. We specifically explain the mechanism behind the lottery ticket conjecture, or why the specific, beneficial initial conditions of some neurons lead them to obtain higher weight norms.
Emerging network paradigms and applications increasingly rely on federated learning (FL) to enable collaborative intelligence while preserving privacy. However, the sustainability of such collaborative environments hinges on a fair and stable payoff allocation mechanism. Focusing on coalition stability, this paper introduces a payoff allocation framework based on the least core (LC) concept. Unlike traditional methods, the LC prioritizes the cohesion of the federation by minimizing the maximum dissatisfaction among all potential subgroups, ensuring that no participant has an incentive to break away. To adapt this game-theoretic concept to practical, large-scale networks, we propose a streamlined implementation with a stack-based pruning algorithm, effectively balancing computational efficiency with allocation precision. Case studies in federated intrusion detection demonstrate that our mechanism correctly identifies pivotal contributors and strategic alliances. The results confirm that the practical LC framework promotes stable collaboration and fosters a sustainable FL ecosystem.
Automatic calibration of multi-camera systems, namely the accurate estimation of spatial extrinsic parameters, is fundamental for 3D reconstruction, panoramic perception, and multi-view data fusion. Existing methods typically rely on calibration targets, explicit geometric modeling, or task-specific neural networks. Such approaches often exhibit limited robustness and applicability in complex dynamic environments or online scenarios, making them difficult to deploy in practical applications. To address this, this paper proposes GMAC, a multi-camera extrinsic estimation framework based on the implicit geometric representations learned by multi-view reconstruction networks. GMAC models extrinsics as global variables constrained by the latent multi-view geometric structure and prunes and structurally reconfigures existing networks so that their latent features can directly support extrinsic prediction through a lightweight regression head, without requiring a completely new network design. Furthermore, GMAC jointly optimizes cross-view reprojection consistency and multi-view cycle consistency, ensuring geometric coherence across cameras while improving prediction accuracy and optimization stability. Experiments on both synthetic and real-world multi-camera datasets demonstrate that GMAC achieves accurate and stable extrinsic estimation without explicit 3D reconstruction or manual calibration, providing a new solution for efficient deployment and online calibration of multi-camera systems.
Neural networks achieve strong empirical performance, but robustness concerns still hinder deployment in safety-critical applications. Formal verification provides robustness guarantees, but current methods face a scalability-completeness trade-off. We propose a hybrid verifier in a branch-and-bound (BaB) framework that efficiently tightens both upper and lower bounds until an $ε-$global optimum is reached or early stop is triggered. The key is an exact nonlinear program with complementarity constraints (NLP-CC) for upper bounding that preserves the ReLU input-output graph, so any feasible solution yields a valid counterexample and enables rapid pruning of unsafe subproblems. We further accelerate verification with (i) warm-started NLP solves requiring minimal constraint-matrix updates and (ii) pattern-aligned strong branching that prioritizes splits most effective at tightening relaxations. We also provide conditions under which NLP-CC upper bounds are tight. Experiments on MNIST and CIFAR-10 show markedly tighter upper bounds than PGD across perturbation radii spanning up to three orders of magnitude, fast per-node solves in practice, and substantial end-to-end speedups over MIP-based verification, amplified by warm-starting, GPU batching, and pattern-aligned branching.
With the rapid expansion of the low-altitude economy, Unmanned Aerial Vehicles (UAVs) serve as pivotal aerial base stations supporting diverse services from users, ranging from latency-sensitive critical missions to bandwidth-intensive data streaming. However, the efficacy of such heterogeneous networks is often compromised by the conflict between limited onboard resources and stringent stability requirements. Moving beyond traditional throughput-centric designs, we propose a Sensing-Communication-Computing-Control closed-loop framework that explicitly models the impact of communication latency on physical control stability. To guarantee mission reliability, we leverage the Lyapunov stability theory to derive an intrinsic mapping between the state evolution of the control system and communication constraints, transforming abstract stability requirements into quantifiable resource boundaries. Then, we formulate the resource allocation problem as a Stackelberg game, where UAVs (as leaders) dynamically price resources to balance load and ensure stability, while users (as followers) optimize requests based on service urgency. Furthermore, addressing the prohibitive computational overhead of standard Deep Reinforcement Learning (DRL) on energy-constrained edge platforms, we propose a novel and lightweight pruning-based Proximal Policy Optimization (PPO) algorithm. By integrating a dynamic structured pruning mechanism, the proposed algorithm significantly compresses the neural network scale during training, enabling the UAV to rapidly approximate the game equilibrium with minimal inference latency. Simulation results demonstrate that the proposed scheme effectively secures control loop stability while maximizing system utility in dynamic low-altitude environments.