What is Network Pruning? Network pruning is a popular approach to reduce a heavy network to obtain a lightweight form by removing redundancy in the heavy network. In this approach, a complex over-parameterized network is first trained, then pruned based on some criteria, and finally fine-tuned to achieve comparable performance with reduced parameters.
Papers and Code
Jul 03, 2025
Abstract:Learned Differentiable Boolean Logic Networks (DBNs) already deliver efficient inference on resource-constrained hardware. We extend them with a trainable, differentiable interconnect whose parameter count remains constant as input width grows, allowing DBNs to scale to far wider layers than earlier learnable-interconnect designs while preserving their advantageous accuracy. To further reduce model size, we propose two complementary pruning stages: an SAT-based logic equivalence pass that removes redundant gates without affecting performance, and a similarity-based, data-driven pass that outperforms a magnitude-style greedy baseline and offers a superior compression-accuracy trade-off.
* 12 pages, 8 Figures
Via

Jul 03, 2025
Abstract:Distributed inference serves as a promising approach to enabling the inference of large language models (LLMs) at the network edge. It distributes the inference process to multiple devices to ensure that the LLMs can fit into the device memory. Recent pipeline-based approaches have the potential to parallelize communication and computation, which helps reduce inference latency. However, the benefit diminishes when the inference request at the network edge is sparse, where pipeline is typically at low utilization. To enable efficient distributed LLM inference at the edge, we propose \textbf{FlowSpec}, a pipeline-parallel tree-based speculative decoding framework. FlowSpec incorporates three key mechanisms to improve decoding efficiency: 1) score-based step-wise verification prioritizes more important draft tokens to bring earlier accpeted tokens; 2) efficient draft management to prune invalid tokens while maintaining correct causal relationship during verification; 3) dynamic draft expansion strategies to supply high-quality speculative inputs. These techniques work in concert to enhance both pipeline utilization and speculative efficiency. We evaluate FlowSpec on a real-world testbed with other baselines. Experimental results demonstrate that our proposed framework significantly improves inference speed across diverse models and configurations, achieving speedup ratios 1.36$\times$-1.77$\times$ compared to baselines. Our code is publicly available at \href{https://github.com/Leosang-lx/FlowSpec#}{https://github.com/Leosang-lx/FlowSpec\#}
* 16 pages, and the last 3 are appendix
Via

Jul 02, 2025
Abstract:Pruning is a highly effective approach for compressing large language models (LLMs), significantly reducing inference latency. However, conventional training-free structured pruning methods often employ a heuristic metric that indiscriminately removes some attention heads across all pruning layers, without considering their positions within the network architecture. In this work, we propose a novel pruning algorithm that strategically prunes attention heads in the model's higher layers. Since the removal of attention heads can alter the magnitude of token representations, we introduce an adaptive rescaling parameter that calibrates the representation scale post-pruning to counteract this effect. We conduct comprehensive experiments on a wide range of LLMs, including LLaMA3.1-8B, Mistral-7B-v0.3, Qwen2-7B, and Gemma2-9B. Our evaluation includes both generation and discriminative tasks across 27 datasets. The results consistently demonstrate that our method outperforms existing structured pruning methods. This improvement is particularly notable in generation tasks, where our approach significantly outperforms existing baselines.
Via

Jun 18, 2025
Abstract:We examine the intrinsic (within the attention head) and extrinsic (amongst the attention heads) structure of the self-attention mechanism in transformers. Theoretical evidence for invariance of the self-attention mechanism to softmax activation is obtained by appealing to paradifferential calculus, (and is supported by computational examples), which relies on the intrinsic organization of the attention heads. Furthermore, we use an existing methodology for hierarchical organization of tensors to examine network structure by constructing hierarchal partition trees with respect to the query, key, and head axes of network 3-tensors. Such an organization is consequential since it allows one to profitably execute common signal processing tasks on a geometry where the organized network 3-tensors exhibit regularity. We exemplify this qualitatively, by visualizing the hierarchical organization of the tree comprised of attention heads and the diffusion map embeddings, and quantitatively by investigating network sparsity with the expansion coefficients of individual attention heads and the entire network with respect to the bi and tri-haar bases (respectively) on the space of queries, keys, and heads of the network. To showcase the utility of our theoretical and methodological findings, we provide computational examples using vision and language transformers. The ramifications of these findings are two-fold: (1) a subsequent step in interpretability analysis is theoretically admitted, and can be exploited empirically for downstream interpretability tasks (2) one can use the network 3-tensor organization for empirical network applications such as model pruning (by virtue of network sparsity) and network architecture comparison.
* 16 pages, 6 figures, 2 tables
Via

Jun 16, 2025
Abstract:The high computational complexity and increasing parameter counts of deep neural networks pose significant challenges for deployment in resource-constrained environments, such as edge devices or real-time systems. To address this, we propose a parameter-efficient neural architecture where neurons are embedded in Euclidean space. During training, their positions are optimized and synaptic weights are determined as the inverse of the spatial distance between connected neurons. These distance-dependent wiring rules replace traditional learnable weight matrices and significantly reduce the number of parameters while introducing a biologically inspired inductive bias: connection strength decreases with spatial distance, reflecting the brain's embedding in three-dimensional space where connections tend to minimize wiring length. We validate this approach for both multi-layer perceptrons and spiking neural networks. Through a series of experiments, we demonstrate that these spatially embedded neural networks achieve a performance competitive with conventional architectures on the MNIST dataset. Additionally, the models maintain performance even at pruning rates exceeding 80% sparsity, outperforming traditional networks with the same number of parameters under similar conditions. Finally, the spatial embedding framework offers an intuitive visualization of the network structure.
* This paper has been accepted and will be presented at the 14th
International Conference on Biomimetic and Biohybrid Systems (Living Machines
2025), July 15-18, 2025, Sheffield, UK. The proceedings will be published
later
Via

Jun 15, 2025
Abstract:Structural pruning techniques are essential for deploying multimodal large language models (MLLMs) across various hardware platforms, from edge devices to cloud servers. However, current pruning methods typically determine optimal strategies through iterative search processes, resulting in substantial computational overhead for on-demand MLLMs adaptation. To address this challenge, we propose LOP, an efficient neural pruning framework that learns optimal pruning strategies from the target pruning constraint, eliminating the need for computationally expensive search-based methods. LOP approach trains autoregressive neural networks (NNs) to directly predict layer-wise pruning strategies adaptive to the target pruning constraint, eliminating the time-consuming iterative searches. Experimental results across multiple tasks show that LOP outperforms state-of-the-art pruning methods in various metrics while achieving up to three orders of magnitude speedup.
Via

Jun 13, 2025
Abstract:Channel pruning is a powerful technique to reduce the computational overhead of deep neural networks, enabling efficient deployment on resource-constrained devices. However, existing pruning methods often rely on local heuristics or weight-based criteria that fail to capture global structural dependencies within the network, leading to suboptimal pruning decisions and degraded model performance. To address these limitations, we propose a novel structure-aware automatic channel pruning (SACP) framework that utilizes graph convolutional networks (GCNs) to model the network topology and learn the global importance of each channel. By encoding structural relationships within the network, our approach implements topology-aware pruning and this pruning is fully automated, reducing the need for human intervention. We restrict the pruning rate combinations to a specific space, where the number of combinations can be dynamically adjusted, and use a search-based approach to determine the optimal pruning rate combinations. Extensive experiments on benchmark datasets (CIFAR-10, ImageNet) with various models (ResNet, VGG16) demonstrate that SACP outperforms state-of-the-art pruning methods on compression efficiency and competitive on accuracy retention.
* 12 pages, 2 figures
Via

Jun 13, 2025
Abstract:With the rapid growth of Internet services, recommendation systems play a central role in delivering personalized content. Faced with massive user requests and complex model architectures, the key challenge for real-time recommendation systems is how to reduce inference latency and increase system throughput without sacrificing recommendation quality. This paper addresses the high computational cost and resource bottlenecks of deep learning models in real-time settings by proposing a combined set of modeling- and system-level acceleration and optimization strategies. At the model level, we dramatically reduce parameter counts and compute requirements through lightweight network design, structured pruning, and weight quantization. At the system level, we integrate multiple heterogeneous compute platforms and high-performance inference libraries, and we design elastic inference scheduling and load-balancing mechanisms based on real-time load characteristics. Experiments show that, while maintaining the original recommendation accuracy, our methods cut latency to less than 30% of the baseline and more than double system throughput, offering a practical solution for deploying large-scale online recommendation services.
Via

Jun 13, 2025
Abstract:Deep neural networks (DNNs) have achieved remarkable success across diverse domains, but their performance can be severely degraded by noisy or corrupted training data. Conventional noise mitigation methods often rely on explicit assumptions about noise distributions or require extensive retraining, which can be impractical for large-scale models. Inspired by the principles of machine unlearning, we propose a novel framework that integrates attribution-guided data partitioning, discriminative neuron pruning, and targeted fine-tuning to mitigate the impact of noisy samples. Our approach employs gradient-based attribution to probabilistically distinguish high-quality examples from potentially corrupted ones without imposing restrictive assumptions on the noise. It then applies regression-based sensitivity analysis to identify and prune neurons that are most vulnerable to noise. Finally, the resulting network is fine-tuned on the high-quality data subset to efficiently recover and enhance its generalization performance. This integrated unlearning-inspired framework provides several advantages over conventional noise-robust learning approaches. Notably, it combines data-level unlearning with model-level adaptation, thereby avoiding the need for full model retraining or explicit noise modeling. We evaluate our method on representative tasks (e.g., CIFAR-10 image classification and speech recognition) under various noise levels and observe substantial gains in both accuracy and efficiency. For example, our framework achieves approximately a 10% absolute accuracy improvement over standard retraining on CIFAR-10 with injected label noise, while reducing retraining time by up to 47% in some settings. These results demonstrate the effectiveness and scalability of the proposed approach for achieving robust generalization in noisy environments.
Via

Jun 09, 2025
Abstract:A variety of pruning methods have been introduced for over-parameterized Recurrent Neural Networks to improve efficiency in terms of power consumption and storage utilization. These advances motivate a new paradigm, termed `hyperpruning', which seeks to identify the most suitable pruning strategy for a given network architecture and application. Unlike conventional hyperparameter search, where the optimal configuration's accuracy remains uncertain, in the context of network pruning, the accuracy of the dense model sets the target for the accuracy of the pruned one. The goal, therefore, is to discover pruned variants that match or even surpass this established accuracy. However, exhaustive search over pruning configurations is computationally expensive and lacks early performance guarantees. To address this challenge, we propose a novel Lyapunov Spectrum (LS)-based distance metric that enables early comparison between pruned and dense networks, allowing accurate prediction of post-training performance. By integrating this LS-based distance with standard hyperparameter optimization algorithms, we introduce an efficient hyperpruning framework, termed LS-based Hyperpruning (LSH). LSH reduces search time by an order of magnitude compared to conventional approaches relying on full training. Experiments on stacked LSTM and RHN architectures using the Penn Treebank dataset, and on AWD-LSTM-MoS using WikiText-2, demonstrate that under fixed training budgets and target pruning ratios, LSH consistently identifies superior pruned models. Remarkably, these pruned variants not only outperform those selected by loss-based baseline but also exceed the performance of their dense counterpart.
* 26 pages, 3 figures
Via
