Abstract:Open-vocabulary mobile manipulation (OVMM) that involves the handling of novel and unseen objects across different workspaces remains a significant challenge for real-world robotic applications. In this paper, we propose a novel Language-conditioned Open-Vocabulary Mobile Manipulation framework, named LOVMM, incorporating the large language model (LLM) and vision-language model (VLM) to tackle various mobile manipulation tasks in household environments. Our approach is capable of solving various OVMM tasks with free-form natural language instructions (e.g. "toss the food boxes on the office room desk to the trash bin in the corner", and "pack the bottles from the bed to the box in the guestroom"). Extensive experiments simulated in complex household environments show strong zero-shot generalization and multi-task learning abilities of LOVMM. Moreover, our approach can also generalize to multiple tabletop manipulation tasks and achieve better success rates compared to other state-of-the-art methods.
Abstract:With the rapid evolution of large language models (LLM), reinforcement learning (RL) has emerged as a pivotal technique for code generation and optimization in various domains. This paper presents a systematic survey of the application of RL in code optimization and generation, highlighting its role in enhancing compiler optimization, resource allocation, and the development of frameworks and tools. Subsequent sections first delve into the intricate processes of compiler optimization, where RL algorithms are leveraged to improve efficiency and resource utilization. The discussion then progresses to the function of RL in resource allocation, emphasizing register allocation and system optimization. We also explore the burgeoning role of frameworks and tools in code generation, examining how RL can be integrated to bolster their capabilities. This survey aims to serve as a comprehensive resource for researchers and practitioners interested in harnessing the power of RL to advance code generation and optimization techniques.
Abstract:The capability of UAVs for efficient autonomous navigation and obstacle avoidance in complex and unknown environments is critical for applications in agricultural irrigation, disaster relief and logistics. In this paper, we propose the DPRL (Distributed Privileged Reinforcement Learning) navigation algorithm, an end-to-end policy designed to address the challenge of high-speed autonomous UAV navigation under partially observable environmental conditions. Our approach combines deep reinforcement learning with privileged learning to overcome the impact of observation data corruption caused by partial observability. We leverage an asymmetric Actor-Critic architecture to provide the agent with privileged information during training, which enhances the model's perceptual capabilities. Additionally, we present a multi-agent exploration strategy across diverse environments to accelerate experience collection, which in turn expedites model convergence. We conducted extensive simulations across various scenarios, benchmarking our DPRL algorithm against the state-of-the-art navigation algorithms. The results consistently demonstrate the superior performance of our algorithm in terms of flight efficiency, robustness and overall success rate.