Topic:Image Steganography
What is Image Steganography? Image steganography is the process of hiding secret information within an image without changing its appearance.
Papers and Code
May 22, 2025
Abstract:Multimodal large language models (MLLMs) enable powerful cross-modal reasoning capabilities. However, the expanded input space introduces new attack surfaces. Previous jailbreak attacks often inject malicious instructions from text into less aligned modalities, such as vision. As MLLMs increasingly incorporate cross-modal consistency and alignment mechanisms, such explicit attacks become easier to detect and block. In this work, we propose a novel implicit jailbreak framework termed IJA that stealthily embeds malicious instructions into images via least significant bit steganography and couples them with seemingly benign, image-related textual prompts. To further enhance attack effectiveness across diverse MLLMs, we incorporate adversarial suffixes generated by a surrogate model and introduce a template optimization module that iteratively refines both the prompt and embedding based on model feedback. On commercial models like GPT-4o and Gemini-1.5 Pro, our method achieves attack success rates of over 90% using an average of only 3 queries.
Via

May 16, 2025
Abstract:Data steganography aims to conceal information within visual content, yet existing spatial- and frequency-domain approaches suffer from trade-offs between security, capacity, and perceptual quality. Recent advances in generative models, particularly diffusion models, offer new avenues for adaptive image synthesis, but integrating precise information embedding into the generative process remains challenging. We introduce Shackled Dancing Diffusion, or SD$^2$, a plug-and-play generative steganography method that combines bit-position locking with diffusion sampling injection to enable controllable information embedding within the generative trajectory. SD$^2$ leverages the expressive power of diffusion models to synthesize diverse carrier images while maintaining full message recovery with $100\%$ accuracy. Our method achieves a favorable balance between randomness and constraint, enhancing robustness against steganalysis without compromising image fidelity. Extensive experiments show that SD$^2$ substantially outperforms prior methods in security, embedding capacity, and stability. This algorithm offers new insights into controllable generation and opens promising directions for secure visual communication.
Via

May 07, 2025
Abstract:As one of the most promising technologies for intellicise (intelligent and consice) wireless networks, Semantic Communication (SemCom) significantly improves communication efficiency by extracting, transmitting, and recovering semantic information, while reducing transmission delay. However, an integration of communication and artificial intelligence (AI) also exposes SemCom to security and privacy threats posed by intelligent eavesdroppers. To address this challenge, image steganography in SemCom embeds secret semantic features within cover semantic features, allowing intelligent eavesdroppers to decode only the cover image. This technique offers a form of "invisible encryption" for SemCom. Motivated by these advancements, this paper conducts a comprehensive exploration of integrating image steganography into SemCom. Firstly, we review existing encryption techniques in SemCom and assess the potential of image steganography in enhancing its security. Secondly, we delve into various image steganographic paradigms designed to secure SemCom, encompassing three categories of joint source-channel coding (JSCC) models tailored for image steganography SemCom, along with multiple training strategies. Thirdly, we present a case study to illustrate the effectiveness of coverless steganography SemCom. Finally, we propose future research directions for image steganography SemCom.
* 10 pages, 4 figures
Via

Apr 25, 2025
Abstract:For deep learning-based image steganography frameworks, in order to ensure the invisibility and recoverability of the information embedding, the loss function usually contains several losses such as embedding loss, recovery loss and steganalysis loss. In previous research works, fixed loss weights are usually chosen for training optimization, and this setting is not linked to the importance of the steganography task itself and the training process. In this paper, we propose a Two-stage Curriculum Learning loss scheduler (TSCL) for balancing multinomial losses in deep learning image steganography algorithms. TSCL consists of two phases: a priori curriculum control and loss dynamics control. The first phase firstly focuses the model on learning the information embedding of the original image by controlling the loss weights in the multi-party adversarial training; secondly, it makes the model shift its learning focus to improving the decoding accuracy; and finally, it makes the model learn to generate a steganographic image that is resistant to steganalysis. In the second stage, the learning speed of each training task is evaluated by calculating the loss drop of the before and after iteration rounds to balance the learning of each task. Experimental results on three large public datasets, ALASKA2, VOC2012 and ImageNet, show that the proposed TSCL strategy improves the quality of steganography, decoding accuracy and security.
Via

Apr 24, 2025
Abstract:Aiming at the problems of poor quality of steganographic images and slow network convergence of image steganography models based on deep learning, this paper proposes a Steganography Curriculum Learning training strategy (STCL) for deep learning image steganography models. So that only easy images are selected for training when the model has poor fitting ability at the initial stage, and gradually expand to more difficult images, the strategy includes a difficulty evaluation strategy based on the teacher model and an knee point-based training scheduling strategy. Firstly, multiple teacher models are trained, and the consistency of the quality of steganographic images under multiple teacher models is used as the difficulty score to construct the training subsets from easy to difficult. Secondly, a training control strategy based on knee points is proposed to reduce the possibility of overfitting on small training sets and accelerate the training process. Experimental results on three large public datasets, ALASKA2, VOC2012 and ImageNet, show that the proposed image steganography scheme is able to improve the model performance under multiple algorithmic frameworks, which not only has a high PSNR, SSIM score, and decoding accuracy, but also the steganographic images generated by the model under the training of the STCL strategy have a low steganography analysis scores. You can find our code at \href{https://github.com/chaos-boops/STCL}{https://github.com/chaos-boops/STCL}.
Via

Apr 23, 2025
Abstract:In recent years, a large number of works have introduced Convolutional Neural Networks (CNNs) into image steganography, which transform traditional steganography methods such as hand-crafted features and prior knowledge design into steganography methods that neural networks autonomically learn information embedding. However, due to the inherent complexity of digital images, issues of invisibility and security persist when using CNN models for information embedding. In this paper, we propose Curriculum Learning Progressive Steganophy Network (CLPSTNet). The network consists of multiple progressive multi-scale convolutional modules that integrate Inception structures and dilated convolutions. The module contains multiple branching pathways, starting from a smaller convolutional kernel and dilatation rate, extracting the basic, local feature information from the feature map, and gradually expanding to the convolution with a larger convolutional kernel and dilatation rate for perceiving the feature information of a larger receptive field, so as to realize the multi-scale feature extraction from shallow to deep, and from fine to coarse, allowing the shallow secret information features to be refined in different fusion stages. The experimental results show that the proposed CLPSTNet not only has high PSNR , SSIM metrics and decoding accuracy on three large public datasets, ALASKA2, VOC2012 and ImageNet, but also the steganographic images generated by CLPSTNet have low steganalysis scores.You can find our code at \href{https://github.com/chaos-boops/CLPSTNet}{https://github.com/chaos-boops/CLPSTNet}.
Via

Apr 15, 2025
Abstract:As deepfake technologies continue to advance, passive detection methods struggle to generalize with various forgery manipulations and datasets. Proactive defense techniques have been actively studied with the primary aim of preventing deepfake operation effectively working. In this paper, we aim to bridge the gap between passive detection and proactive defense, and seek to solve the detection problem utilizing a proactive methodology. Inspired by several watermarking-based forensic methods, we explore a novel detection framework based on the concept of ``hiding a learnable face within a face''. Specifically, relying on a semi-fragile invertible steganography network, a secret template image is embedded into a host image imperceptibly, acting as an indicator monitoring for any malicious image forgery when being restored by the inverse steganography process. Instead of being manually specified, the secret template is optimized during training to resemble a neutral facial appearance, just like a ``big brother'' hidden in the image to be protected. By incorporating a self-blending mechanism and robustness learning strategy with a simulative transmission channel, a robust detector is built to accurately distinguish if the steganographic image is maliciously tampered or benignly processed. Finally, extensive experiments conducted on multiple datasets demonstrate the superiority of the proposed approach over competing passive and proactive detection methods.
Via

Apr 18, 2025
Abstract:Modern identity verification systems increasingly rely on facial images embedded in biometric documents such as electronic passports. To ensure global interoperability and security, these images must comply with strict standards defined by the International Civil Aviation Organization (ICAO), which specify acquisition, quality, and format requirements. However, once issued, these images may undergo unintentional degradations (e.g., compression, resizing) or malicious manipulations (e.g., morphing) and deceive facial recognition systems. In this study, we explore fragile watermarking, based on deep steganographic embedding as a proactive mechanism to certify the authenticity of ICAO-compliant facial images. By embedding a hidden image within the official photo at the time of issuance, we establish an integrity marker that becomes sensitive to any post-issuance modification. We assess how a range of image manipulations affects the recovered hidden image and show that degradation artifacts can serve as robust forensic cues. Furthermore, we propose a classification framework that analyzes the revealed content to detect and categorize the type of manipulation applied. Our experiments demonstrate high detection accuracy, including cross-method scenarios with multiple deep steganography-based models. These findings support the viability of fragile watermarking via steganographic embedding as a valuable tool for biometric document integrity verification.
Via

Apr 08, 2025
Abstract:Recently, the diffusion model has gained significant attention as one of the most successful image generation models, which can generate high-quality images by iteratively sampling noise. However, recent studies have shown that diffusion models are vulnerable to backdoor attacks, allowing attackers to enter input data containing triggers to activate the backdoor and generate their desired output. Existing backdoor attack methods primarily focused on target noise-to-image and text-to-image tasks, with limited work on backdoor attacks in image-to-image tasks. Furthermore, traditional backdoor attacks often rely on a single, conspicuous trigger to generate a fixed target image, lacking concealability and flexibility. To address these limitations, we propose a novel backdoor attack method called "Parasite" for image-to-image tasks in diffusion models, which not only is the first to leverage steganography for triggers hiding, but also allows attackers to embed the target content as a backdoor trigger to achieve a more flexible attack. "Parasite" as a novel attack method effectively bypasses existing detection frameworks to execute backdoor attacks. In our experiments, "Parasite" achieved a 0 percent backdoor detection rate against the mainstream defense frameworks. In addition, in the ablation study, we discuss the influence of different hiding coefficients on the attack results. You can find our code at https://anonymous.4open.science/r/Parasite-1715/.
Via

Mar 16, 2025
Abstract:Image steganography is an information-hiding technique that involves the surreptitious concealment of covert informational content within digital images. In this paper, we introduce ${\rm SCR{\small EED}S{\small OLO}}$, a novel framework for concealing arbitrary binary data within images. Our approach synergistically leverages Random Shuffling, Fernet Symmetric Encryption, and Reed-Solomon Error Correction Codes to encode the secret payload, which is then discretely embedded into the carrier image using LSB (Least Significant Bit) Steganography. The combination of these methods addresses the vulnerability vectors of both security and resilience against bit-level corruption in the resultant stego-images. We show that our framework achieves a data payload of 3 bits per pixel for an RGB image, and mathematically assess the probability of successful transmission for the amalgamated $n$ message bits and $k$ error correction bits. Additionally, we find that ${\rm SCR{\small EED}S{\small OLO}}$ yields good results upon being evaluated with multiple performance metrics, successfully eludes detection by various passive steganalysis tools, and is immune to simple active steganalysis attacks. Our code and data are available at https://github.com/Starscream-11813/SCReedSolo-Steganography.
* Submitted to the 33rd European Signal Processing Conference (EUSIPCO
2025), 5 pages, 21 figures, 4 tables
Via
