Artificial intelligence (AI)-enabled diagnostics in maxillofacial pathology require structured, high-quality multimodal datasets. However, existing resources provide limited ameloblastoma coverage and lack the format consistency needed for direct model training. We present a newly curated multimodal dataset specifically focused on ameloblastoma, integrating annotated radiological, histopathological, and intraoral clinical images with structured data derived from case reports. Natural language processing techniques were employed to extract clinically relevant features from textual reports, while image data underwent domain specific preprocessing and augmentation. Using this dataset, a multimodal deep learning model was developed to classify ameloblastoma variants, assess behavioral patterns such as recurrence risk, and support surgical planning. The model is designed to accept clinical inputs such as presenting complaint, age, and gender during deployment to enhance personalized inference. Quantitative evaluation demonstrated substantial improvements; variant classification accuracy increased from 46.2 percent to 65.9 percent, and abnormal tissue detection F1-score improved from 43.0 percent to 90.3 percent. Benchmarked against resources like MultiCaRe, this work advances patient-specific decision support by providing both a robust dataset and an adaptable multimodal AI framework.
Accurate risk stratification of precancerous polyps during routine colonoscopy screenings is essential for lowering the risk of developing colorectal cancer (CRC). However, assessment of low-grade dysplasia remains limited by subjective histopathologic interpretation. Advancements in digital pathology and deep learning provide new opportunities to identify subtle and fine morphologic patterns associated with malignant progression that may be imperceptible to the human eye. In this work, we propose XtraLight-MedMamba, an ultra-lightweight state-space-based deep learning framework for classifying neoplastic tubular adenomas from whole-slide images (WSIs). The architecture is a blend of ConvNext based shallow feature extractor with parallel vision mamba to efficiently model both long- and short-range dependencies and image generalization. An integration of Spatial and Channel Attention Bridge (SCAB) module enhances multiscale feature extraction, while Fixed Non-Negative Orthogonal Classifier (FNOClassifier) enables substantial parameter reduction and improved generalization. The model was evaluated on a curated dataset acquired from patients with low-grade tubular adenomas, stratified into case and control cohorts based on subsequent CRC development. XtraLight-MedMamba achieved an accuracy of 97.18% and an F1-score of 0.9767 using approximately 32,000 parameters, outperforming transformer-based and conventional Mamba architectures with significantly higher model complexity.
Accurate histopathologic interpretation is key for clinical decision-making; however, current deep learning models for digital pathology are often overconfident and poorly calibrated in out-of-distribution (OOD) settings, which limit trust and clinical adoption. Safety-critical medical imaging workflows benefit from intrinsic uncertainty-aware properties that can accurately reject OOD input. We implement the Spectral-normalized Neural Gaussian Process (SNGP), a set of lightweight modifications that apply spectral normalization and replace the final dense layer with a Gaussian process layer to improve single-model uncertainty estimation and OOD detection. We evaluate SNGP vs. deterministic and MonteCarlo dropout on six datasets across three biomedical classification tasks: white blood cells, amyloid plaques, and colorectal histopathology. SNGP has comparable in-distribution performance while significantly improving uncertainty estimation and OOD detection. Thus, SNGP or related models offer a useful framework for uncertainty-aware classification in digital pathology, supporting safe deployment and building trust with pathologists.
Deep learning models in medical image analysis often struggle with generalizability across domains and demographic groups due to data heterogeneity and scarcity. Traditional augmentation improves robustness, but fails under substantial domain shifts. Recent advances in stylistic augmentation enhance domain generalization by varying image styles but fall short in terms of style diversity or by introducing artifacts into the generated images. To address these limitations, we propose Stylizing ViT, a novel Vision Transformer encoder that utilizes weight-shared attention blocks for both self- and cross-attention. This design allows the same attention block to maintain anatomical consistency through self-attention while performing style transfer via cross-attention. We assess the effectiveness of our method for domain generalization by employing it for data augmentation on three distinct image classification tasks in the context of histopathology and dermatology. Results demonstrate an improved robustness (up to +13% accuracy) over the state of the art while generating perceptually convincing images without artifacts. Additionally, we show that Stylizing ViT is effective beyond training, achieving a 17% performance improvement during inference when used for test-time augmentation. The source code is available at https://github.com/sdoerrich97/stylizing-vit .
Federated learning enables collaborative model training across geographically distributed medical centers while preserving data privacy. However, domain shifts and heterogeneity in data often lead to a degradation in model performance. Medical imaging applications are particularly affected by variations in acquisition protocols, scanner types, and patient populations. To address these issues, we introduce Federated Template and Task Learning (FeTTL), a novel framework designed to harmonize multi-institutional medical imaging data in federated environments. FeTTL learns a global template together with a task model to align data distributions among clients. We evaluated FeTTL on two challenging and diverse multi-institutional medical imaging tasks: retinal fundus optical disc segmentation and histopathological metastasis classification. Experimental results show that FeTTL significantly outperforms the state-of-the-art federated learning baselines (p-values <0.002) for optical disc segmentation and classification of metastases from multi-institutional data. Our experiments further highlight the importance of jointly learning the template and the task. These findings suggest that FeTTL offers a principled and extensible solution for mitigating distribution shifts in federated learning, supporting robust model deployment in real-world, multi-institutional environments.
Interpretability is significant in computational pathology, leading to the development of multimodal information integration from histopathological image and corresponding text data.However, existing multimodal methods have limited interpretability due to the lack of high-quality dataset that support explicit reasoning and inference and simple reasoning process.To address the above problems, we introduce a novel multimodal pathology large language model with strong reasoning capabilities.To improve the generation of accurate and contextually relevant textual descriptions, we design a semantic reward strategy integrated with group relative policy optimization.We construct a high-quality pathology visual question answering (VQA) dataset, specifically designed to support complex reasoning tasks.Comprehensive experiments conducted on this dataset demonstrate that our method outperforms state-of-the-art methods, even when trained with only 20% of the data.Our method also achieves comparable performance on downstream zero-shot image classification task compared with CLIP.
Supervised deep learning models often achieve excellent performance within their training distribution but struggle to generalize beyond it. In cancer histopathology, for example, a convolutional neural network (CNN) may classify cancer severity accurately for cancer types represented in its training data, yet fail on related but unseen types. Although adenocarcinomas from different organs share morphological features that might support limited cross-domain generalization, addressing domain shift directly is necessary for robust performance. Domain adaptation offers a way to transfer knowledge from labeled data in one cancer type to unlabeled data in another, helping mitigate the scarcity of annotated medical images. This work evaluates cross-domain classification performance among lung, colon, breast, and kidney adenocarcinomas. A ResNet50 trained on any single adenocarcinoma achieves over 98% accuracy on its own domain but shows minimal generalization to others. Ensembling multiple supervised models does not resolve this limitation. In contrast, converting the ResNet50 into a domain adversarial neural network (DANN) substantially improves performance on unlabeled target domains. A DANN trained on labeled breast and colon data and adapted to unlabeled lung data reaches 95.56% accuracy. We also examine the impact of stain normalization on domain adaptation. Its effects vary by target domain: for lung, accuracy drops from 95.56% to 66.60%, while for breast and colon targets, stain normalization boosts accuracy from 49.22% to 81.29% and from 78.48% to 83.36%, respectively. Finally, using Integrated Gradients reveals that DANNs consistently attribute importance to biologically meaningful regions such as densely packed nuclei, indicating that the model learns clinically relevant features and can apply them to unlabeled cancer types.
Deep learning for cancer histopathology training conflicts with privacy constraints in clinical settings. Federated Learning (FL) mitigates this by keeping data local; however, its performance depends on hyperparameter choices under non-independent and identically distributed (non-IID) client datasets. This paper examined whether hyperparameters optimized on one cancer imaging dataset generalized across non-IID federated scenarios. We considered binary histopathology tasks for ovarian and colorectal cancers. We perform centralized Bayesian hyperparameter optimization and transfer dataset-specific optima to the non-IID FL setup. The main contribution of this study is the introduction of a simple cross-dataset aggregation heuristic by combining configurations by averaging the learning rates and considering the modal optimizers and batch sizes. This combined configuration achieves a competitive classification performance.
Assisting pathologists in the analysis of histopathological images has high clinical value, as it supports cancer detection and staging. In this context, histology foundation models have recently emerged. Among them, Vision-Language Models (VLMs) provide strong yet imperfect zero-shot predictions. We propose to refine these predictions by adapting Conditional Random Fields (CRFs) to histopathological applications, requiring no additional model training. We present HistoCRF, a CRF-based framework, with a novel definition of the pairwise potential that promotes label diversity and leverages expert annotations. We consider three experiments: without annotations, with expert annotations, and with iterative human-in-the-loop annotations that progressively correct misclassified patches. Experiments on five patch-level classification datasets covering different organs and diseases demonstrate average accuracy gains of 16.0% without annotations and 27.5% with only 100 annotations, compared to zero-shot predictions. Moreover, integrating a human in the loop reaches a further gain of 32.6% with the same number of annotations. The code will be made available on https://github.com/tgodelaine/HistoCRF.
Vision Transformers (ViTs) have gained rapid adoption in computational pathology for their ability to model long-range dependencies through self-attention, addressing the limitations of convolutional neural networks that excel at local pattern capture but struggle with global contextual reasoning. Recent pathology-specific foundation models have further advanced performance by leveraging large-scale pretraining. However, standard ViTs remain inherently non-equivariant to transformations such as rotations and reflections, which are ubiquitous variations in histopathology imaging. To address this limitation, we propose Equi-ViT, which integrates an equivariant convolution kernel into the patch embedding stage of a ViT architecture, imparting built-in rotational equivariance to learned representations. Equi-ViT achieves superior rotation-consistent patch embeddings and stable classification performance across image orientations. Our results on a public colorectal cancer dataset demonstrate that incorporating equivariant patch embedding enhances data efficiency and robustness, suggesting that equivariant transformers could potentially serve as more generalizable backbones for the application of ViT in histopathology, such as digital pathology foundation models.