Abstract:Vision Transformers (ViTs) have gained rapid adoption in computational pathology for their ability to model long-range dependencies through self-attention, addressing the limitations of convolutional neural networks that excel at local pattern capture but struggle with global contextual reasoning. Recent pathology-specific foundation models have further advanced performance by leveraging large-scale pretraining. However, standard ViTs remain inherently non-equivariant to transformations such as rotations and reflections, which are ubiquitous variations in histopathology imaging. To address this limitation, we propose Equi-ViT, which integrates an equivariant convolution kernel into the patch embedding stage of a ViT architecture, imparting built-in rotational equivariance to learned representations. Equi-ViT achieves superior rotation-consistent patch embeddings and stable classification performance across image orientations. Our results on a public colorectal cancer dataset demonstrate that incorporating equivariant patch embedding enhances data efficiency and robustness, suggesting that equivariant transformers could potentially serve as more generalizable backbones for the application of ViT in histopathology, such as digital pathology foundation models.
Abstract:Histopathology evaluation of tissue specimens through microscopic examination is essential for accurate disease diagnosis and prognosis. However, traditional manual analysis by specially trained pathologists is time-consuming, labor-intensive, cost-inefficient, and prone to inter-rater variability, potentially affecting diagnostic consistency and accuracy. As digital pathology images continue to proliferate, there is a pressing need for automated analysis to address these challenges. Recent advancements in artificial intelligence-based tools such as machine learning (ML) models, have significantly enhanced the precision and efficiency of analyzing histopathological slides. However, despite their impressive performance, ML models are invariant only to translation, lacking invariance to rotation and reflection. This limitation restricts their ability to generalize effectively, particularly in histopathology, where images intrinsically lack meaningful orientation. In this study, we develop robust, equivariant histopathological biomarkers through a novel symmetric convolutional kernel via unsupervised segmentation. The approach is validated using prostate tissue micro-array (TMA) images from 50 patients in the Gleason 2019 Challenge public dataset. The biomarkers extracted through this approach demonstrate enhanced robustness and generalizability against rotation compared to models using standard convolution kernels, holding promise for enhancing the accuracy, consistency, and robustness of ML models in digital pathology. Ultimately, this work aims to improve diagnostic and prognostic capabilities of histopathology beyond prostate cancer through equivariant imaging.