Abstract:Proximal Policy Optimization (PPO) is a widely used reinforcement learning algorithm known for its stability and sample efficiency, but it often suffers from premature convergence due to limited exploration. In this paper, we propose POEM (Proximal Policy Optimization with Evolutionary Mutations), a novel modification to PPO that introduces an adaptive exploration mechanism inspired by evolutionary algorithms. POEM enhances policy diversity by monitoring the Kullback-Leibler (KL) divergence between the current policy and a moving average of previous policies. When policy changes become minimal, indicating stagnation, POEM triggers an adaptive mutation of policy parameters to promote exploration. We evaluate POEM on four OpenAI Gym environments: CarRacing, MountainCar, BipedalWalker, and LunarLander. Through extensive fine-tuning using Bayesian optimization techniques and statistical testing using Welch's t-test, we find that POEM significantly outperforms PPO on three of the four tasks (BipedalWalker: t=-2.0642, p=0.0495; CarRacing: t=-6.3987, p=0.0002; MountainCar: t=-6.2431, p<0.0001), while performance on LunarLander is not statistically significant (t=-1.8707, p=0.0778). Our results highlight the potential of integrating evolutionary principles into policy gradient methods to overcome exploration-exploitation tradeoffs.
Abstract:Supervised deep learning models often achieve excellent performance within their training distribution but struggle to generalize beyond it. In cancer histopathology, for example, a convolutional neural network (CNN) may classify cancer severity accurately for cancer types represented in its training data, yet fail on related but unseen types. Although adenocarcinomas from different organs share morphological features that might support limited cross-domain generalization, addressing domain shift directly is necessary for robust performance. Domain adaptation offers a way to transfer knowledge from labeled data in one cancer type to unlabeled data in another, helping mitigate the scarcity of annotated medical images. This work evaluates cross-domain classification performance among lung, colon, breast, and kidney adenocarcinomas. A ResNet50 trained on any single adenocarcinoma achieves over 98% accuracy on its own domain but shows minimal generalization to others. Ensembling multiple supervised models does not resolve this limitation. In contrast, converting the ResNet50 into a domain adversarial neural network (DANN) substantially improves performance on unlabeled target domains. A DANN trained on labeled breast and colon data and adapted to unlabeled lung data reaches 95.56% accuracy. We also examine the impact of stain normalization on domain adaptation. Its effects vary by target domain: for lung, accuracy drops from 95.56% to 66.60%, while for breast and colon targets, stain normalization boosts accuracy from 49.22% to 81.29% and from 78.48% to 83.36%, respectively. Finally, using Integrated Gradients reveals that DANNs consistently attribute importance to biologically meaningful regions such as densely packed nuclei, indicating that the model learns clinically relevant features and can apply them to unlabeled cancer types.
Abstract:The inception of spatial transcriptomics has allowed improved comprehension of tissue architectures and the disentanglement of complex underlying biological, physiological, and pathological processes through their positional contexts. Recently, these contexts, and by extension the field, have seen much promise and elucidation with the application of graph learning approaches. In particular, neural operators have risen in regards to learning the mapping between infinite-dimensional function spaces. With basic to deep neural network architectures being data-driven, i.e. dependent on quality data for prediction, neural operators provide robustness by offering generalization among different resolutions despite low quality data. Graph neural operators are a variant that utilize graph networks to learn this mapping between function spaces. The aim of this research is to identify robust machine learning architectures that integrate spatial information to predict tissue types. Under this notion, we propose a study incorporating various graph neural network approaches to validate the efficacy of applying neural operators towards prediction of brain regions in mouse brain tissue samples as a proof of concept towards our purpose. We were able to achieve an F1 score of nearly 72% for the graph neural operator approach which outperformed all baseline and other graph network approaches.