Facial landmark detection is the process of identifying and locating key points on a human face in an image or video.
High-precision facial landmark detection (FLD) relies on high-resolution deep feature representations. However, low-resolution face images or the compression (via pooling or strided convolution) of originally high-resolution images hinder the learning of such features, thereby reducing FLD accuracy. Moreover, insufficient training data and imprecise annotations further degrade performance. To address these challenges, we propose a weakly-supervised framework called Supervision-by-Hallucination-and-Transfer (SHT) for more robust and precise FLD. SHT contains two novel mutually enhanced modules: Dual Hallucination Learning Network (DHLN) and Facial Pose Transfer Network (FPTN). By incorporating FLD and face hallucination tasks, DHLN is able to learn high-resolution representations with low-resolution inputs for recovering both facial structures and local details and generating more effective landmark heatmaps. Then, by transforming faces from one pose to another, FPTN can further improve landmark heatmaps and faces hallucinated by DHLN for detecting more accurate landmarks. To the best of our knowledge, this is the first study to explore weakly-supervised FLD by integrating face hallucination and facial pose transfer tasks. Experimental results of both face hallucination and FLD demonstrate that our method surpasses state-of-the-art techniques.
Recently, deep learning based facial landmark detection (FLD) methods have achieved considerable success. However, in challenging scenarios such as large pose variations, illumination changes, and facial expression variations, they still struggle to accurately capture the geometric structure of the face, resulting in performance degradation. Moreover, the limited size and diversity of existing FLD datasets hinder robust model training, leading to reduced detection accuracy. To address these challenges, we propose a Frequency-Guided Task-Balancing Transformer (FGTBT), which enhances facial structure perception through frequency-domain modeling and multi-dataset unified training. Specifically, we propose a novel Fine-Grained Multi-Task Balancing loss (FMB-loss), which moves beyond coarse task-level balancing by assigning weights to individual landmarks based on their occurrence across datasets. This enables more effective unified training and mitigates the issue of inconsistent gradient magnitudes. Additionally, a Frequency-Guided Structure-Aware (FGSA) model is designed to utilize frequency-guided structure injection and regularization to help learn facial structure constraints. Extensive experimental results on popular benchmark datasets demonstrate that the integration of the proposed FMB-loss and FGSA model into our FGTBT framework achieves performance comparable to state-of-the-art methods. The code is available at https://github.com/Xi0ngxinyu/FGTBT.
Early identification of stroke symptoms is essential for enabling timely intervention and improving patient outcomes, particularly in prehospital settings. This study presents a fast, non-invasive multimodal deep learning framework for automatic binary stroke screening based on data collected during the F.A.S.T. assessment. The proposed approach integrates complementary information from facial expressions, speech signals, and upper-body movements to enhance diagnostic robustness. Facial dynamics are represented using landmark based features and modeled with a Transformer architecture to capture temporal dependencies. Speech signals are converted into mel spectrograms and processed using an Audio Spectrogram Transformer, while upper-body pose sequences are analyzed with an MLP-Mixer network to model spatiotemporal motion patterns. The extracted modality specific representations are combined through an attention-based fusion mechanism to effectively learn cross modal interactions. Experiments conducted on a self-collected dataset of 222 videos from 37 subjects demonstrate that the proposed multimodal model consistently outperforms unimodal baselines, achieving 95.83% accuracy and a 96.00% F1-score. The model attains a strong balance between sensitivity and specificity and successfully detects all stroke cases in the test set. These results highlight the potential of multimodal learning and transfer learning for early stroke screening, while emphasizing the need for larger, clinically representative datasets to support reliable real-world deployment.




Ensuring the ethical use of video data involving human subjects, particularly infants, requires robust anonymization methods. We propose BLANKET (Baby-face Landmark-preserving ANonymization with Keypoint dEtection consisTency), a novel approach designed to anonymize infant faces in video recordings while preserving essential facial attributes. Our method comprises two stages. First, a new random face, compatible with the original identity, is generated via inpainting using a diffusion model. Second, the new identity is seamlessly incorporated into each video frame through temporally consistent face swapping with authentic expression transfer. The method is evaluated on a dataset of short video recordings of babies and is compared to the popular anonymization method, DeepPrivacy2. Key metrics assessed include the level of de-identification, preservation of facial attributes, impact on human pose estimation (as an example of a downstream task), and presence of artifacts. Both methods alter the identity, and our method outperforms DeepPrivacy2 in all other respects. The code is available as an easy-to-use anonymization demo at https://github.com/ctu-vras/blanket-infant-face-anonym.
Suspiciousness estimation is critical for proactive threat detection and ensuring public safety in complex environments. This work introduces a large-scale annotated dataset, USE50k, along with a computationally efficient vision-based framework for real-time suspiciousness analysis. The USE50k dataset contains 65,500 images captured from diverse and uncontrolled environments, such as airports, railway stations, restaurants, parks, and other public areas, covering a broad spectrum of cues including weapons, fire, crowd density, abnormal facial expressions, and unusual body postures. Building on this dataset, we present DeepUSEvision, a lightweight and modular system integrating three key components, i.e., a Suspicious Object Detector based on an enhanced YOLOv12 architecture, dual Deep Convolutional Neural Networks (DCNN-I and DCNN-II) for facial expression and body-language recognition using image and landmark features, and a transformer-based Discriminator Network that adaptively fuses multimodal outputs to yield an interpretable suspiciousness score. Extensive experiments confirm the superior accuracy, robustness, and interpretability of the proposed framework compared to state-of-the-art approaches. Collectively, the USE50k dataset and the DeepUSEvision framework establish a strong and scalable foundation for intelligent surveillance and real-time risk assessment in safety-critical applications.
Hearing-impaired individuals often face significant barriers in daily communication due to the inherent challenges of producing clear speech. To address this, we introduce the Omni-Model paradigm into assistive technology and present HI-TransPA, an instruction-driven audio-visual personal assistant. The model fuses indistinct speech with lip dynamics, enabling both translation and dialogue within a single multimodal framework. To address the distinctive pronunciation patterns of hearing-impaired speech and the limited adaptability of existing models, we develop a multimodal preprocessing and curation pipeline that detects facial landmarks, stabilizes the lip region, and quantitatively evaluates sample quality. These quality scores guide a curriculum learning strategy that first trains on clean, high-confidence samples and progressively incorporates harder cases to strengthen model robustness. Architecturally, we employs a novel unified 3D-Resampler to efficiently encode the lip dynamics, which is critical for accurate interpretation. Experiments on purpose-built HI-Dialogue dataset show that HI-TransPA achieves state-of-the-art performance in both literal accuracy and semantic fidelity. Our work establishes a foundation for applying Omni-Models to assistive communication technology, providing an end-to-end modeling framework and essential processing tools for future research.




A long road trip is fun for drivers. However, a long drive for days can be tedious for a driver to accommodate stringent deadlines to reach distant destinations. Such a scenario forces drivers to drive extra miles, utilizing extra hours daily without sufficient rest and breaks. Once a driver undergoes such a scenario, it occasionally triggers drowsiness during driving. Drowsiness in driving can be life-threatening to any individual and can affect other drivers' safety; therefore, a real-time detection system is needed. To identify fatigued facial characteristics in drivers and trigger the alarm immediately, this research develops a real-time driver drowsiness detection system utilizing deep convolutional neural networks (DCNNs) and OpenCV.Our proposed and implemented model takes real- time facial images of a driver using a live camera and utilizes a Python-based library named OpenCV to examine the facial images for facial landmarks like sufficient eye openings and yawn-like mouth movements. The DCNNs framework then gathers the data and utilizes a per-trained model to detect the drowsiness of a driver using facial landmarks. If the driver is identified as drowsy, the system issues a continuous alert in real time, embedded in the Smart Car technology.By potentially saving innocent lives on the roadways, the proposed technique offers a non-invasive, inexpensive, and cost-effective way to identify drowsiness. Our proposed and implemented DCNNs embedded drowsiness detection model successfully react with NTHU-DDD dataset and Yawn-Eye-Dataset with drowsiness detection classification accuracy of 99.6% and 97% respectively.
One of the major causes of road accidents is driver fatigue that causes thousands of fatalities and injuries every year. This study shows development of a Driver Drowsiness Detection System meant to improve the safety of the road by alerting drivers who are showing signs of being drowsy. The system is based on a standard webcam that tracks the facial features of the driver with the main emphasis on the examination of eye movements that can be conducted with the help of the Eye Aspect Ratio (EAR) method. The Face Mesh by MediaPipe is a lightweight framework that can identify facial landmarks with high accuracy and efficiency, which is considered to be important in real time use. The system detects the moments of long eye shutdowns or a very low rate of blinking which are manifestations of drowsiness and alerts the driver through sound to get her attention back. This system achieves a high-performance and low-cost driver monitoring solution with the help of the computational power of OpenCV to process the image and the MediaPipe to identify faces. Test data experimental analyses indicate that the system is very accurate and responds quicker; this confirms that it can be a component of the current Advanced Driving Assistance System (ADAS).




Facial landmark detection is an important task in computer vision with numerous applications, such as head pose estimation, expression analysis, face swapping, etc. Heatmap regression-based methods have been widely used to achieve state-of-the-art results in this task. These methods involve computing the argmax over the heatmaps to predict a landmark. Since argmax is not differentiable, these methods use a differentiable approximation, Soft-argmax, to enable end-to-end training on deep-nets. In this work, we revisit this long-standing choice of using Soft-argmax and demonstrate that it is not the only way to achieve strong performance. Instead, we propose an alternative training objective based on the classic structured prediction framework. Empirically, our method achieves state-of-the-art performance on three facial landmark benchmarks (WFLW, COFW, and 300W), converging 2.2x faster during training while maintaining better/competitive accuracy. Our code is available here: https://github.com/ca-joe-yang/regression-without-softarg.
The rapid development of deepfake generation techniques necessitates robust face forgery detection algorithms. While methods based on Convolutional Neural Networks (CNNs) and Transformers are effective, there is still room for improvement in modeling the highly complex and non-linear nature of forgery artifacts. To address this issue, we propose a novel detection method based on the Kolmogorov-Arnold Network (KAN). By replacing fixed activation functions with learnable splines, our KAN-based approach is better suited to this challenge. Furthermore, to guide the network's focus towards critical facial areas, we introduce a Landmark-assisted Adaptive Kolmogorov-Arnold Network (LAKAN) module. This module uses facial landmarks as a structural prior to dynamically generate the internal parameters of the KAN, creating an instance-specific signal that steers a general-purpose image encoder towards the most informative facial regions with artifacts. This core innovation creates a powerful combination between geometric priors and the network's learning process. Extensive experiments on multiple public datasets show that our proposed method achieves superior performance.