Detecting misalignment in large language models is challenging because models may learn to conceal misbehavior during training. Standard auditing techniques fall short: black-box methods often cannot distinguish misaligned outputs from benign ones, and mechanistic interpretability does not scale with model capabilities. We introduce Split Personality Training (SPT), which fine-tunes a second ``honest persona'' into LoRA parameters that remain inactive during normal operation. After the main model responds, we activate the LoRA adapter and insert a trigger string, enabling the honest persona to review the response while accessing the main model's latent states. We test our method on the Anthropic Auditing Game Model Organism, a benchmark where Llama-3.3-70B is trained to exploit reward hacks while concealing this behavior. SPT achieves 96% overall accuracy, whereas Anthropic reports near 0% accuracy. The honest persona reveals latent knowledge inaccessible to external observers, such as the fictional biases the compromised model was trained on.
As generative artificial intelligence advances, Large Language Models (LLMs) are being explored for automated graphical user interface (GUI) design. This study investigates the usability and adaptability of LLM-generated interfaces by analysing their ability to meet diverse user needs. The experiments included utilization of three state-of-the-art models from January 2025 (OpenAI GPT o3-mini-high, DeepSeek R1, and Anthropic Claude 3.5 Sonnet) generating mockups for three interface types: a chat system, a technical team panel, and a manager dashboard. Expert evaluations revealed that while LLMs are effective at creating structured layouts, they face challenges in meeting accessibility standards and providing interactive functionality. Further testing showed that LLMs could partially tailor interfaces for different user personas but lacked deeper contextual understanding. The results suggest that while LLMs are promising tools for early-stage UI prototyping, human intervention remains critical to ensure usability, accessibility, and user satisfaction.
Large Language Models are increasingly deployed as educational tools, yet existing benchmarks focus on narrow skills and lack grounding in learning sciences. We introduce OpenLearnLM Benchmark, a theory-grounded framework evaluating LLMs across three dimensions derived from educational assessment theory: Knowledge (curriculum-aligned content and pedagogical understanding), Skills (scenario-based competencies organized through a four-level center-role-scenario-subscenario hierarchy), and Attitude (alignment consistency and deception resistance). Our benchmark comprises 124K+ items spanning multiple subjects, educational roles, and difficulty levels based on Bloom's taxonomy. The Knowledge domain prioritizes authentic assessment items from established benchmarks, while the Attitude domain adapts Anthropic's Alignment Faking methodology to detect behavioral inconsistency under varying monitoring conditions. Evaluation of seven frontier models reveals distinct capability profiles: Claude-Opus-4.5 excels in practical skills despite lower content knowledge, while Grok-4.1-fast leads in knowledge but shows alignment concerns. Notably, no single model dominates all dimensions, validating the necessity of multi-axis evaluation. OpenLearnLM provides an open, comprehensive framework for advancing LLM readiness in authentic educational contexts.
This study introduces a novel approach for early Type 2 Diabetes Mellitus (T2DM) risk prediction using a tabular transformer (TabTrans) architecture to analyze longitudinal patient data. By processing patients` longitudinal health records and bone-related tabular data, our model captures complex, long-range dependencies in disease progression that conventional methods often overlook. We validated our TabTrans model on a retrospective Qatar BioBank (QBB) cohort of 1,382 subjects, comprising 725 men (146 diabetic, 579 healthy) and 657 women (133 diabetic, 524 healthy). The study integrated electronic health records (EHR) with dual-energy X-ray absorptiometry (DXA) data. To address class imbalance, we employed SMOTE and SMOTE-ENN resampling techniques. The proposed model`s performance is evaluated against conventional machine learning (ML) and generative AI models, including Claude 3.5 Sonnet (Anthropic`s constitutional AI), GPT-4 (OpenAI`s generative pre-trained transformer), and Gemini Pro (Google`s multimodal language model). Our TabTrans model demonstrated superior predictive performance, achieving ROC AUC $\geq$ 79.7 % for T2DM prediction compared to both generative AI models and conventional ML approaches. Feature interpretation analysis identified key risk indicators, with visceral adipose tissue (VAT) mass and volume, ward bone mineral density (BMD) and bone mineral content (BMC), T and Z-scores, and L1-L4 scores emerging as the most important predictors associated with diabetes development in Qatari adults. These findings demonstrate the significant potential of TabTrans for analyzing complex tabular healthcare data, providing a powerful tool for proactive T2DM management and personalized clinical interventions in the Qatari population. Index Terms: tabular transformers, multimodal data, DXA data, diabetes, T2DM, feature interpretation, tabular data
Multimodal Large Language Models (MLLMs) can directly consume exam documents, threatening conventional assessments and academic integrity. We present DoPE (Decoy-Oriented Perturbation Encapsulation), a document-layer defense framework that embeds semantic decoys into PDF/HTML assessments to exploit render-parse discrepancies in MLLM pipelines. By instrumenting exams at authoring time, DoPE provides model-agnostic prevention (stop or confound automated solving) and detection (flag blind AI reliance) without relying on conventional one-shot classifiers. We formalize prevention and detection tasks, and introduce FewSoRT-Q, an LLM-guided pipeline that generates question-level semantic decoys and FewSoRT-D to encapsulate them into watermarked documents. We evaluate on Integrity-Bench, a novel benchmark of 1826 exams (PDF+HTML) derived from public QA datasets and OpenCourseWare. Against black-box MLLMs from OpenAI and Anthropic, DoPE yields strong empirical gains: a 91.4% detection rate at an 8.7% false-positive rate using an LLM-as-Judge verifier, and prevents successful completion or induces decoy-aligned failures in 96.3% of attempts. We release Integrity-Bench, our toolkit, and evaluation code to enable reproducible study of document-layer defenses for academic integrity.
The ARC-AGI benchmark series serves as a critical measure of few-shot generalization on novel tasks, a core aspect of intelligence. The ARC Prize 2025 global competition targeted the newly released ARC-AGI-2 dataset, which features greater task complexity compared to its predecessor. The Kaggle competition attracted 1,455 teams and 15,154 entries, with the top score reaching 24% on the ARC-AGI-2 private evaluation set. Paper submissions nearly doubled year-over-year to 90 entries, reflecting the growing research interest in fluid intelligence and abstract reasoning. The defining theme of 2025 is the emergence of the refinement loop -- a per-task iterative program optimization loop guided by a feedback signal. Refinement loops come in a variety of forms, in particular evolutionary program synthesis approaches and application-layer refinements to commercial AI systems. Such refinement loops are also possible in weight space, as evidenced by zero-pretraining deep learning methods which are now achieving competitive performance with remarkably small networks (7M parameters). In parallel, four frontier AI labs (Anthropic, Google DeepMind, OpenAI, and xAI) reported ARC-AGI performance in public model cards in 2025, establishing ARC-AGI as an industry standard benchmark for AI reasoning. However, our analysis indicates that current frontier AI reasoning performance remains fundamentally constrained to knowledge coverage, giving rise to new forms of benchmark contamination. In this paper, we survey the top-performing methods, examine the role of refinement loops in AGI progress, discuss knowledge-dependent overfitting, and preview ARC-AGI-3, which introduces interactive reasoning challenges that require exploration, planning, memory, goal acquisition, and alignment capabilities.
Large Language Models (LLMs) are increasingly integrated into academic research pipelines; however, the Terms of Service governing their use remain under-examined. We present a comparative analysis of the Terms of Service of five major LLM providers (Anthropic, DeepSeek, Google, OpenAI, and xAI) collected in November 2025. Our analysis reveals substantial variation in the stringency and specificity of usage restrictions for general users and researchers. We identify specific complexities for researchers in security research, computational social sciences, and psychological studies. We identify `regulatory gray areas' where Terms of Service create uncertainty for legitimate use. We contribute a publicly available resource comparing terms across platforms (OSF) and discuss implications for general users and researchers navigating this evolving landscape.
Recent advancements in Large Language Model (LLM) agents have enabled complex multi-turn agentic tasks requiring extensive tool calling, where conversations can span dozens of API calls with increasingly large context windows. However, although major LLM providers offer prompt caching to reduce cost and latency, its benefits for agentic workloads remain underexplored in the research literature. To our knowledge, no prior work quantifies these cost savings or compares caching strategies for multi-turn agentic tasks. We present a comprehensive evaluation of prompt caching across three major LLM providers (OpenAI, Anthropic, and Google) and compare three caching strategies, including full context caching, system prompt only caching, and caching that excludes dynamic tool results. We evaluate on DeepResearchBench, a multi-turn agentic benchmark where agents autonomously execute real-world web search tool calls to answer complex research questions, measuring both API cost and time to first token (TTFT) across over 500 agent sessions with 10,000-token system prompts. Our results demonstrate that prompt caching reduces API costs by 45-80% and improves time to first token by 13-31% across providers. We find that strategic prompt cache block control, such as placing dynamic content at the end of the system prompt, avoiding dynamic traditional function calling, and excluding dynamic tool results, provides more consistent benefits than naive full-context caching, which can paradoxically increase latency. Our analysis reveals nuanced variations in caching behavior across providers, and we provide practical guidance for implementing prompt caching in production agentic systems.
On December 4, 2025, Anthropic released Anthropic Interviewer, an AI tool for running qualitative interviews at scale, along with a public dataset of 1,250 interviews with professionals, including 125 scientists, about their use of AI for research. Focusing on the scientist subset, I show that widely available LLMs with web search and agentic capabilities can link six out of twenty-four interviews to specific scientific works, recovering associated authors and, in some cases, uniquely identifying the interviewees. My contribution is to show that modern LLM-based agents make such re-identification attacks easy and low-effort: off-the-shelf tools can, with a few natural-language prompts, search the web, cross-reference details, and propose likely matches, effectively lowering the technical barrier. Existing safeguards can be bypassed by breaking down the re-identification into benign tasks. I outline the attack at a high level, discuss implications for releasing rich qualitative data in the age of LLM agents, and propose mitigation recommendations and open problems. I have notified Anthropic of my findings.
Recent work by Anthropic on Mechanistic interpretability claims to understand and control Large Language Models by extracting human-interpretable features from their neural activation patterns using sparse autoencoders (SAEs). If successful, this approach offers one of the most promising routes for human oversight in AI safety. We conduct an initial stress-test of these claims by replicating their main results with open-source SAEs for Llama 3.1. While we successfully reproduce basic feature extraction and steering capabilities, our investigation suggests that major caution is warranted regarding the generalizability of these claims. We find that feature steering exhibits substantial fragility, with sensitivity to layer selection, steering magnitude, and context. We observe non-standard activation behavior and demonstrate the difficulty to distinguish thematically similar features from one another. While SAE-based interpretability produces compelling demonstrations in selected cases, current methods often fall short of the systematic reliability required for safety-critical applications. This suggests a necessary shift in focus from prioritizing interpretability of internal representations toward reliable prediction and control of model output. Our work contributes to a more nuanced understanding of what mechanistic interpretability has achieved and highlights fundamental challenges for AI safety that remain unresolved.