Histopathology analysis relies on Hematoxylin and Eosin (H&E) staining, but fluorescence microscopy offers complementary information. Converting fluorescence images to H&E-like appearance can aid interpretation and integration with standard workflows. We present a Cycle-Consistent Adversarial Network (CycleGAN) approach for unpaired image-to-image translation from multi-channel fluorescence microscopy to pseudo H&E stained histopathology images. The method combines C01 and C02 fluorescence channels into RGB and learns a bidirectional mapping between fluorescence and H&E domains without paired training data. The architecture uses ResNet-based generators with residual blocks and PatchGAN discriminators, trained with adversarial, cycle-consistency, and identity losses. Experiments on fluorescence microscopy datasets show the model generates realistic pseudo H&E images that preserve morphological structures while adopting H&E-like color characteristics. This enables visualization of fluorescence data in a format familiar to pathologists and supports integration with existing H&E-based analysis pipelines.
Explainable artificial intelligence (XAI) is concerned with producing explanations indicating the inner workings of models. For a Rashomon set of similarly performing models, explanations provide a way of disambiguating the behavior of individual models, helping select models for deployment. However explanations themselves can vary depending on the explainer used, and need to be evaluated. In the paper "Evaluating Model Explanations without Ground Truth", we proposed three principles of explanation evaluation and a new method "AXE" to evaluate the quality of feature-importance explanations. We go on to illustrate how evaluation metrics that rely on comparing model explanations against ideal ground truth explanations obscure behavioral differences within a Rashomon set. Explanation evaluation aligned with our proposed principles would highlight these differences instead, helping select models from the Rashomon set. The selection of alternate models from the Rashomon set can maintain identical predictions but mislead explainers into generating false explanations, and mislead evaluation methods into considering the false explanations to be of high quality. AXE, our proposed explanation evaluation method, can detect this adversarial fairwashing of explanations with a 100% success rate. Unlike prior explanation evaluation strategies such as those based on model sensitivity or ground truth comparison, AXE can determine when protected attributes are used to make predictions.
Agentic Retrieval-Augmented Generation (RAG) empowers large language models to autonomously plan and retrieve information for complex problem-solving. However, the development of robust agents is hindered by the scarcity of high-quality training data that reflects the noise and complexity of real-world retrieval environments. Conventional manual annotation is unscalable and often fails to capture the dynamic reasoning strategies required to handle retrieval failures. To bridge this gap, we introduce RAGShaper, a novel data synthesis framework designed to automate the construction of RAG tasks and robust agent trajectories. RAGShaper incorporates an InfoCurator to build dense information trees enriched with adversarial distractors spanning Perception and Cognition levels. Furthermore, we propose a constrained navigation strategy that forces a teacher agent to confront these distractors, thereby eliciting trajectories that explicitly demonstrate error correction and noise rejection. Comprehensive experiments confirm that models trained on our synthesized corpus significantly outperform existing baselines, exhibiting superior robustness in noise-intensive and complex retrieval tasks.
Recent reports of large language models (LLMs) exhibiting behaviors such as deception, threats, or blackmail are often interpreted as evidence of alignment failure or emergent malign agency. We argue that this interpretation rests on a conceptual error. LLMs do not reason morally; they statistically internalize the record of human social interaction, including laws, contracts, negotiations, conflicts, and coercive arrangements. Behaviors commonly labeled as unethical or anomalous are therefore better understood as structural generalizations of interaction regimes that arise under extreme asymmetries of power, information, or constraint. Drawing on relational models theory, we show that practices such as blackmail are not categorical deviations from normal social behavior, but limiting cases within the same continuum that includes market pricing, authority relations, and ultimatum bargaining. The surprise elicited by such outputs reflects an anthropomorphic expectation that intelligence should reproduce only socially sanctioned behavior, rather than the full statistical landscape of behaviors humans themselves enact. Because human morality is plural, context-dependent, and historically contingent, the notion of a universally moral artificial intelligence is ill-defined. We therefore reframe concerns about artificial general intelligence (AGI). The primary risk is not adversarial intent, but AGI's role as an endogenous amplifier of human intelligence, power, and contradiction. By eliminating longstanding cognitive and institutional frictions, AGI compresses timescales and removes the historical margin of error that has allowed inconsistent values and governance regimes to persist without collapse. Alignment failure is thus structural, not accidental, and requires governance approaches that address amplification, complexity, and regime stability rather than model-level intent alone.
Image generation models (IGMs), while capable of producing impressive and creative content, often memorize a wide range of undesirable concepts from their training data, leading to the reproduction of unsafe content such as NSFW imagery and copyrighted artistic styles. Such behaviors pose persistent safety and compliance risks in real-world deployments and cannot be reliably mitigated by post-hoc filtering, owing to the limited robustness of such mechanisms and a lack of fine-grained semantic control. Recent unlearning methods seek to erase harmful concepts at the model level, which exhibit the limitations of requiring costly retraining, degrading the quality of benign generations, or failing to withstand prompt paraphrasing and adversarial attacks. To address these challenges, we introduce SafeRedir, a lightweight inference-time framework for robust unlearning via prompt embedding redirection. Without modifying the underlying IGMs, SafeRedir adaptively routes unsafe prompts toward safe semantic regions through token-level interventions in the embedding space. The framework comprises two core components: a latent-aware multi-modal safety classifier for identifying unsafe generation trajectories, and a token-level delta generator for precise semantic redirection, equipped with auxiliary predictors for token masking and adaptive scaling to localize and regulate the intervention. Empirical results across multiple representative unlearning tasks demonstrate that SafeRedir achieves effective unlearning capability, high semantic and perceptual preservation, robust image quality, and enhanced resistance to adversarial attacks. Furthermore, SafeRedir generalizes effectively across a variety of diffusion backbones and existing unlearned models, validating its plug-and-play compatibility and broad applicability. Code and data are available at https://github.com/ryliu68/SafeRedir.
We investigate a failure mode of large language models (LLMs) in which plain-text prompts elicit excessive outputs, a phenomenon we term Overflow. Unlike jailbreaks or prompt injection, Overflow arises under ordinary interaction settings and can lead to elevated serving cost, latency, and cross-user performance degradation, particularly when scaled across many requests. Beyond usability, the stakes are economic and environmental: unnecessary tokens increase per-request cost and energy consumption, compounding into substantial operational spend and carbon footprint at scale. Moreover, Overflow represents a practical vector for compute amplification and service degradation in shared environments. We introduce BenchOverflow, a model-agnostic benchmark of nine plain-text prompting strategies that amplify output volume without adversarial suffixes or policy circumvention. Using a standardized protocol with a fixed budget of 5000 new tokens, we evaluate nine open- and closed-source models and observe pronounced rightward shifts and heavy tails in length distributions. Cap-saturation rates (CSR@1k/3k/5k) and empirical cumulative distribution functions (ECDFs) quantify tail risk; within-prompt variance and cross-model correlations show that Overflow is broadly reproducible yet heterogeneous across families and attack vectors. A lightweight mitigation-a fixed conciseness reminder-attenuates right tails and lowers CSR for all strategies across the majority of models. Our findings position length control as a measurable reliability, cost, and sustainability concern rather than a stylistic quirk. By enabling standardized comparison of length-control robustness across models, BenchOverflow provides a practical basis for selecting deployments that minimize resource waste and operating expense, and for evaluating defenses that curb compute amplification without eroding task performance.
Generative Adversarial Networks (GANs) face a significant challenge of striking an optimal balance between high-quality image generation and training stability. Recent techniques, such as DCGAN, BigGAN, and StyleGAN, improve visual fidelity; however, such techniques usually struggle with mode collapse and unstable gradients at high network depth. This paper proposes a novel GAN structural model that incorporates deeper inception-inspired convolution and dilated convolution. This novel model is termed the Inception Generative Adversarial Network (IGAN). The IGAN model generates high-quality synthetic images while maintaining training stability, by reducing mode collapse as well as preventing vanishing and exploding gradients. Our proposed IGAN model achieves the Frechet Inception Distance (FID) of 13.12 and 15.08 on the CUB-200 and ImageNet datasets, respectively, representing a 28-33% improvement in FID over the state-of-the-art GANs. Additionally, the IGAN model attains an Inception Score (IS) of 9.27 and 68.25, reflecting improved image diversity and generation quality. Finally, the two techniques of dropout and spectral normalization are utilized in both the generator and discriminator structures to further mitigate gradient explosion and overfitting. These findings confirm that the IGAN model potentially balances training stability with image generation quality, constituting a scalable and computationally efficient framework for high-fidelity image synthesis.
Cardiac amyloidosis (CA) is a rare and underdiagnosed infiltrative cardiomyopathy, and available datasets for machine-learning models are typically small, imbalanced and heterogeneous. This paper presents a Generative Adversarial Network (GAN) and a graphical command-line interface for generating realistic synthetic electrocardiogram (ECG) beats to support early diagnosis and patient stratification in CA. The tool is designed for usability, allowing clinical researchers to train class-specific generators once and then interactively produce large volumes of labelled synthetic beats that preserve the distribution of minority classes.
Subject-independent EEG emotion recognition is challenged by pronounced inter-subject variability and the difficulty of learning robust representations from short, noisy recordings. To address this, we propose a fusion framework that integrates (i) local, channel-wise descriptors and (ii) global, trial-level descriptors, improving cross-subject generalization on the SEED-VII dataset. Local representations are formed per channel by concatenating differential entropy with graph-theoretic features, while global representations summarize time-domain, spectral, and complexity characteristics at the trial level. These representations are fused in a dual-branch transformer with attention-based fusion and domain-adversarial regularization, with samples filtered by an intensity threshold. Experiments under a leave-one-subject-out protocol demonstrate that the proposed method consistently outperforms single-view and classical baselines, achieving approximately 40% mean accuracy in 7-class subject-independent emotion recognition. The code has been released at https://github.com/Danielz-z/LGF-EEG-Emotion.
The LLM-as-a-Judge paradigm promises scalable rubric-based evaluation, yet aligning frozen black-box models with human standards remains a challenge due to inherent generation stochasticity. We reframe judge alignment as a criteria transfer problem and isolate three recurrent failure modes: rubric instability caused by prompt sensitivity, unverifiable reasoning that lacks auditable evidence, and scale misalignment with human grading boundaries. To address these issues, we introduce RULERS (Rubric Unification, Locking, and Evidence-anchored Robust Scoring), a compiler-executor framework that transforms natural language rubrics into executable specifications. RULERS operates by compiling criteria into versioned immutable bundles, enforcing structured decoding with deterministic evidence verification, and applying lightweight Wasserstein-based post-hoc calibration, all without updating model parameters. Extensive experiments on essay and summarization benchmarks demonstrate that RULERS significantly outperforms representative baselines in human agreement, maintains strong stability against adversarial rubric perturbations, and enables smaller models to rival larger proprietary judges. Overall, our results suggest that reliable LLM judging requires executable rubrics, verifiable evidence, and calibrated scales rather than prompt phrasing alone. Code is available at https://github.com/LabRAI/Rulers.git.