Alert button
Picture for Zuobai Zhang

Zuobai Zhang

Alert button

DiffPack: A Torsional Diffusion Model for Autoregressive Protein Side-Chain Packing

Jun 01, 2023
Yangtian Zhan, Zuobai Zhang, Bozitao Zhong, Sanchit Misra, Jian Tang

Figure 1 for DiffPack: A Torsional Diffusion Model for Autoregressive Protein Side-Chain Packing
Figure 2 for DiffPack: A Torsional Diffusion Model for Autoregressive Protein Side-Chain Packing
Figure 3 for DiffPack: A Torsional Diffusion Model for Autoregressive Protein Side-Chain Packing
Figure 4 for DiffPack: A Torsional Diffusion Model for Autoregressive Protein Side-Chain Packing

Proteins play a critical role in carrying out biological functions, and their 3D structures are essential in determining their functions. Accurately predicting the conformation of protein side-chains given their backbones is important for applications in protein structure prediction, design and protein-protein interactions. Traditional methods are computationally intensive and have limited accuracy, while existing machine learning methods treat the problem as a regression task and overlook the restrictions imposed by the constant covalent bond lengths and angles. In this work, we present DiffPack, a torsional diffusion model that learns the joint distribution of side-chain torsional angles, the only degrees of freedom in side-chain packing, by diffusing and denoising on the torsional space. To avoid issues arising from simultaneous perturbation of all four torsional angles, we propose autoregressively generating the four torsional angles from \c{hi}1 to \c{hi}4 and training diffusion models for each torsional angle. We evaluate the method on several benchmarks for protein side-chain packing and show that our method achieves improvements of 11.9% and 13.5% in angle accuracy on CASP13 and CASP14, respectively, with a significantly smaller model size (60x fewer parameters). Additionally, we show the effectiveness of our method in enhancing side-chain predictions in the AlphaFold2 model. Code will be available upon the accept.

* Under review 
Viaarxiv icon

Enhancing Protein Language Models with Structure-based Encoder and Pre-training

Mar 11, 2023
Zuobai Zhang, Minghao Xu, Vijil Chenthamarakshan, Aurélie Lozano, Payel Das, Jian Tang

Figure 1 for Enhancing Protein Language Models with Structure-based Encoder and Pre-training
Figure 2 for Enhancing Protein Language Models with Structure-based Encoder and Pre-training
Figure 3 for Enhancing Protein Language Models with Structure-based Encoder and Pre-training
Figure 4 for Enhancing Protein Language Models with Structure-based Encoder and Pre-training

Protein language models (PLMs) pre-trained on large-scale protein sequence corpora have achieved impressive performance on various downstream protein understanding tasks. Despite the ability to implicitly capture inter-residue contact information, transformer-based PLMs cannot encode protein structures explicitly for better structure-aware protein representations. Besides, the power of pre-training on available protein structures has not been explored for improving these PLMs, though structures are important to determine functions. To tackle these limitations, in this work, we enhance the PLMs with structure-based encoder and pre-training. We first explore feasible model architectures to combine the advantages of a state-of-the-art PLM (i.e., ESM-1b1) and a state-of-the-art protein structure encoder (i.e., GearNet). We empirically verify the ESM-GearNet that connects two encoders in a series way as the most effective combination model. To further improve the effectiveness of ESM-GearNet, we pre-train it on massive unlabeled protein structures with contrastive learning, which aligns representations of co-occurring subsequences so as to capture their biological correlation. Extensive experiments on EC and GO protein function prediction benchmarks demonstrate the superiority of ESM-GearNet over previous PLMs and structure encoders, and clear performance gains are further achieved by structure-based pre-training upon ESM-GearNet. Our implementation is available at https://github.com/DeepGraphLearning/GearNet.

Viaarxiv icon

Physics-Inspired Protein Encoder Pre-Training via Siamese Sequence-Structure Diffusion Trajectory Prediction

Jan 28, 2023
Zuobai Zhang, Minghao Xu, Aurélie Lozano, Vijil Chenthamarakshan, Payel Das, Jian Tang

Figure 1 for Physics-Inspired Protein Encoder Pre-Training via Siamese Sequence-Structure Diffusion Trajectory Prediction
Figure 2 for Physics-Inspired Protein Encoder Pre-Training via Siamese Sequence-Structure Diffusion Trajectory Prediction
Figure 3 for Physics-Inspired Protein Encoder Pre-Training via Siamese Sequence-Structure Diffusion Trajectory Prediction
Figure 4 for Physics-Inspired Protein Encoder Pre-Training via Siamese Sequence-Structure Diffusion Trajectory Prediction

Pre-training methods on proteins are recently gaining interest, leveraging either protein sequences or structures, while modeling their joint energy landscape is largely unexplored. In this work, inspired by the success of denoising diffusion models, we propose the DiffPreT approach to pre-train a protein encoder by sequence-structure multimodal diffusion modeling. DiffPreT guides the encoder to recover the native protein sequences and structures from the perturbed ones along the multimodal diffusion trajectory, which acquires the joint distribution of sequences and structures. Considering the essential protein conformational variations, we enhance DiffPreT by a physics-inspired method called Siamese Diffusion Trajectory Prediction (SiamDiff) to capture the correlation between different conformers of a protein. SiamDiff attains this goal by maximizing the mutual information between representations of diffusion trajectories of structurally-correlated conformers. We study the effectiveness of DiffPreT and SiamDiff on both atom- and residue-level structure-based protein understanding tasks. Experimental results show that the performance of DiffPreT is consistently competitive on all tasks, and SiamDiff achieves new state-of-the-art performance, considering the mean ranks on all tasks. The source code will be released upon acceptance.

Viaarxiv icon

Metro: Memory-Enhanced Transformer for Retrosynthetic Planning via Reaction Tree

Sep 30, 2022
Songtao Liu, Rex Ying, Zuobai Zhang, Peilin Zhao, Jian Tang, Lu Lin, Dinghao Wu

Figure 1 for Metro: Memory-Enhanced Transformer for Retrosynthetic Planning via Reaction Tree
Figure 2 for Metro: Memory-Enhanced Transformer for Retrosynthetic Planning via Reaction Tree
Figure 3 for Metro: Memory-Enhanced Transformer for Retrosynthetic Planning via Reaction Tree
Figure 4 for Metro: Memory-Enhanced Transformer for Retrosynthetic Planning via Reaction Tree

Retrosynthetic planning plays a critical role in drug discovery and organic chemistry. Starting from a target molecule as the root node, it aims to find a complete reaction tree subject to the constraint that all leaf nodes belong to a set of starting materials. The multi-step reactions are crucial because they determine the flow chart in the production of the Organic Chemical Industry. However, existing datasets lack curation of tree-structured multi-step reactions, and fail to provide such reaction trees, limiting models' understanding of organic molecule transformations. In this work, we first develop a benchmark curated for the retrosynthetic planning task, which consists of 124,869 reaction trees retrieved from the public USPTO-full dataset. On top of that, we propose Metro: Memory-Enhanced Transformer for RetrOsynthetic planning. Specifically, the dependency among molecules in the reaction tree is captured as context information for multi-step retrosynthesis predictions through transformers with a memory module. Extensive experiments show that Metro dramatically outperforms existing single-step retrosynthesis models by at least 10.7% in top-1 accuracy. The experiments demonstrate the superiority of exploiting context information in the retrosynthetic planning task. Moreover, the proposed model can be directly used for synthetic accessibility analysis, as it is trained on reaction trees with the shortest depths. Our work is the first step towards a brand new formulation for retrosynthetic planning in the aspects of data construction, model design, and evaluation. Code is available at https://github.com/SongtaoLiu0823/metro.

Viaarxiv icon

PEER: A Comprehensive and Multi-Task Benchmark for Protein Sequence Understanding

Jun 05, 2022
Minghao Xu, Zuobai Zhang, Jiarui Lu, Zhaocheng Zhu, Yangtian Zhang, Chang Ma, Runcheng Liu, Jian Tang

Figure 1 for PEER: A Comprehensive and Multi-Task Benchmark for Protein Sequence Understanding
Figure 2 for PEER: A Comprehensive and Multi-Task Benchmark for Protein Sequence Understanding
Figure 3 for PEER: A Comprehensive and Multi-Task Benchmark for Protein Sequence Understanding

We are now witnessing significant progress of deep learning methods in a variety of tasks (or datasets) of proteins. However, there is a lack of a standard benchmark to evaluate the performance of different methods, which hinders the progress of deep learning in this field. In this paper, we propose such a benchmark called PEER, a comprehensive and multi-task benchmark for Protein sEquence undERstanding. PEER provides a set of diverse protein understanding tasks including protein function prediction, protein localization prediction, protein structure prediction, protein-protein interaction prediction, and protein-ligand interaction prediction. We evaluate different types of sequence-based methods for each task including traditional feature engineering approaches, different sequence encoding methods as well as large-scale pre-trained protein language models. In addition, we also investigate the performance of these methods under the multi-task learning setting. Experimental results show that large-scale pre-trained protein language models achieve the best performance for most individual tasks, and jointly training multiple tasks further boosts the performance. The datasets and source codes of this benchmark will be open-sourced soon.

* Research project paper. arXiv v1: release all benchmark results (source code will be released soon in the next version) 
Viaarxiv icon

Neural-Symbolic Models for Logical Queries on Knowledge Graphs

May 16, 2022
Zhaocheng Zhu, Mikhail Galkin, Zuobai Zhang, Jian Tang

Figure 1 for Neural-Symbolic Models for Logical Queries on Knowledge Graphs
Figure 2 for Neural-Symbolic Models for Logical Queries on Knowledge Graphs
Figure 3 for Neural-Symbolic Models for Logical Queries on Knowledge Graphs
Figure 4 for Neural-Symbolic Models for Logical Queries on Knowledge Graphs

Answering complex first-order logic (FOL) queries on knowledge graphs is a fundamental task for multi-hop reasoning. Traditional symbolic methods traverse a complete knowledge graph to extract the answers, which provides good interpretation for each step. Recent neural methods learn geometric embeddings for complex queries. These methods can generalize to incomplete knowledge graphs, but their reasoning process is hard to interpret. In this paper, we propose Graph Neural Network Query Executor (GNN-QE), a neural-symbolic model that enjoys the advantages of both worlds. GNN-QE decomposes a complex FOL query into relation projections and logical operations over fuzzy sets, which provides interpretability for intermediate variables. To reason about the missing links, GNN-QE adapts a graph neural network from knowledge graph completion to execute the relation projections, and models the logical operations with product fuzzy logic. Extensive experiments on 3 datasets show that GNN-QE significantly improves over previous state-of-the-art models in answering FOL queries. Meanwhile, GNN-QE can predict the number of answers without explicit supervision, and provide visualizations for intermediate variables.

* ICML 2022 
Viaarxiv icon

A Roadmap for Big Model

Apr 02, 2022
Sha Yuan, Hanyu Zhao, Shuai Zhao, Jiahong Leng, Yangxiao Liang, Xiaozhi Wang, Jifan Yu, Xin Lv, Zhou Shao, Jiaao He, Yankai Lin, Xu Han, Zhenghao Liu, Ning Ding, Yongming Rao, Yizhao Gao, Liang Zhang, Ming Ding, Cong Fang, Yisen Wang, Mingsheng Long, Jing Zhang, Yinpeng Dong, Tianyu Pang, Peng Cui, Lingxiao Huang, Zheng Liang, Huawei Shen, Hui Zhang, Quanshi Zhang, Qingxiu Dong, Zhixing Tan, Mingxuan Wang, Shuo Wang, Long Zhou, Haoran Li, Junwei Bao, Yingwei Pan, Weinan Zhang, Zhou Yu, Rui Yan, Chence Shi, Minghao Xu, Zuobai Zhang, Guoqiang Wang, Xiang Pan, Mengjie Li, Xiaoyu Chu, Zijun Yao, Fangwei Zhu, Shulin Cao, Weicheng Xue, Zixuan Ma, Zhengyan Zhang, Shengding Hu, Yujia Qin, Chaojun Xiao, Zheni Zeng, Ganqu Cui, Weize Chen, Weilin Zhao, Yuan Yao, Peng Li, Wenzhao Zheng, Wenliang Zhao, Ziyi Wang, Borui Zhang, Nanyi Fei, Anwen Hu, Zenan Ling, Haoyang Li, Boxi Cao, Xianpei Han, Weidong Zhan, Baobao Chang, Hao Sun, Jiawen Deng, Chujie Zheng, Juanzi Li, Lei Hou, Xigang Cao, Jidong Zhai, Zhiyuan Liu, Maosong Sun, Jiwen Lu, Zhiwu Lu, Qin Jin, Ruihua Song, Ji-Rong Wen, Zhouchen Lin, Liwei Wang, Hang Su, Jun Zhu, Zhifang Sui, Jiajun Zhang, Yang Liu, Xiaodong He, Minlie Huang, Jian Tang, Jie Tang

Figure 1 for A Roadmap for Big Model
Figure 2 for A Roadmap for Big Model
Figure 3 for A Roadmap for Big Model
Figure 4 for A Roadmap for Big Model

With the rapid development of deep learning, training Big Models (BMs) for multiple downstream tasks becomes a popular paradigm. Researchers have achieved various outcomes in the construction of BMs and the BM application in many fields. At present, there is a lack of research work that sorts out the overall progress of BMs and guides the follow-up research. In this paper, we cover not only the BM technologies themselves but also the prerequisites for BM training and applications with BMs, dividing the BM review into four parts: Resource, Models, Key Technologies and Application. We introduce 16 specific BM-related topics in those four parts, they are Data, Knowledge, Computing System, Parallel Training System, Language Model, Vision Model, Multi-modal Model, Theory&Interpretability, Commonsense Reasoning, Reliability&Security, Governance, Evaluation, Machine Translation, Text Generation, Dialogue and Protein Research. In each topic, we summarize clearly the current studies and propose some future research directions. At the end of this paper, we conclude the further development of BMs in a more general view.

* arXiv admin note: text overlap with arXiv:2107.06499 by other authors 
Viaarxiv icon

Protein Representation Learning by Geometric Structure Pretraining

Mar 14, 2022
Zuobai Zhang, Minghao Xu, Arian Jamasb, Vijil Chenthamarakshan, Aurelie Lozano, Payel Das, Jian Tang

Figure 1 for Protein Representation Learning by Geometric Structure Pretraining
Figure 2 for Protein Representation Learning by Geometric Structure Pretraining
Figure 3 for Protein Representation Learning by Geometric Structure Pretraining
Figure 4 for Protein Representation Learning by Geometric Structure Pretraining

Learning effective protein representations is critical in a variety of tasks in biology such as predicting protein function or structure. Existing approaches usually pretrain protein language models on a large number of unlabeled amino acid sequences and then finetune the models with some labeled data in downstream tasks. Despite the effectiveness of sequence-based approaches, the power of pretraining on smaller numbers of known protein structures has not been explored for protein property prediction, though protein structures are known to be determinants of protein function. We first present a simple yet effective encoder to learn protein geometry features. We pretrain the protein graph encoder by leveraging multiview contrastive learning and different self-prediction tasks. Experimental results on both function prediction and fold classification tasks show that our proposed pretraining methods outperform or are on par with the state-of-the-art sequence-based methods using much less data. All codes and models will be published upon acceptance.

Viaarxiv icon

Structured Multi-task Learning for Molecular Property Prediction

Feb 22, 2022
Shengchao Liu, Meng Qu, Zuobai Zhang, Huiyu Cai, Jian Tang

Figure 1 for Structured Multi-task Learning for Molecular Property Prediction
Figure 2 for Structured Multi-task Learning for Molecular Property Prediction
Figure 3 for Structured Multi-task Learning for Molecular Property Prediction
Figure 4 for Structured Multi-task Learning for Molecular Property Prediction

Multi-task learning for molecular property prediction is becoming increasingly important in drug discovery. However, in contrast to other domains, the performance of multi-task learning in drug discovery is still not satisfying as the number of labeled data for each task is too limited, which calls for additional data to complement the data scarcity. In this paper, we study multi-task learning for molecular property prediction in a novel setting, where a relation graph between tasks is available. We first construct a dataset including around 400 tasks as well as a task relation graph. Then to better utilize such relation graph, we propose a method called SGNN-EBM to systematically investigate the structured task modeling from two perspectives. (1) In the \emph{latent} space, we model the task representations by applying a state graph neural network (SGNN) on the relation graph. (2) In the \emph{output} space, we employ structured prediction with the energy-based model (EBM), which can be efficiently trained through noise-contrastive estimation (NCE) approach. Empirical results justify the effectiveness of SGNN-EBM. Code is available on https://github.com/chao1224/SGNN-EBM.

Viaarxiv icon

TorchDrug: A Powerful and Flexible Machine Learning Platform for Drug Discovery

Feb 16, 2022
Zhaocheng Zhu, Chence Shi, Zuobai Zhang, Shengchao Liu, Minghao Xu, Xinyu Yuan, Yangtian Zhang, Junkun Chen, Huiyu Cai, Jiarui Lu, Chang Ma, Runcheng Liu, Louis-Pascal Xhonneux, Meng Qu, Jian Tang

Figure 1 for TorchDrug: A Powerful and Flexible Machine Learning Platform for Drug Discovery
Figure 2 for TorchDrug: A Powerful and Flexible Machine Learning Platform for Drug Discovery

Machine learning has huge potential to revolutionize the field of drug discovery and is attracting increasing attention in recent years. However, lacking domain knowledge (e.g., which tasks to work on), standard benchmarks and data preprocessing pipelines are the main obstacles for machine learning researchers to work in this domain. To facilitate the progress of machine learning for drug discovery, we develop TorchDrug, a powerful and flexible machine learning platform for drug discovery built on top of PyTorch. TorchDrug benchmarks a variety of important tasks in drug discovery, including molecular property prediction, pretrained molecular representations, de novo molecular design and optimization, retrosynthsis prediction, and biomedical knowledge graph reasoning. State-of-the-art techniques based on geometric deep learning (or graph machine learning), deep generative models, reinforcement learning and knowledge graph reasoning are implemented for these tasks. TorchDrug features a hierarchical interface that facilitates customization from both novices and experts in this domain. Tutorials, benchmark results and documentation are available at https://torchdrug.ai. Code is released under Apache License 2.0.

Viaarxiv icon