Peking University
Abstract:Diverse video captioning aims to generate a set of sentences to describe the given video in various aspects. Mainstream methods are trained with independent pairs of a video and a caption from its ground-truth set without exploiting the intra-set relationship, resulting in low diversity of generated captions. Different from them, we formulate diverse captioning into a semantic-concept-guided set prediction (SCG-SP) problem by fitting the predicted caption set to the ground-truth set, where the set-level relationship is fully captured. Specifically, our set prediction consists of two synergistic tasks, i.e., caption generation and an auxiliary task of concept combination prediction providing extra semantic supervision. Each caption in the set is attached to a concept combination indicating the primary semantic content of the caption and facilitating element alignment in set prediction. Furthermore, we apply a diversity regularization term on concepts to encourage the model to generate semantically diverse captions with various concept combinations. These two tasks share multiple semantics-specific encodings as input, which are obtained by iterative interaction between visual features and conceptual queries. The correspondence between the generated captions and specific concept combinations further guarantees the interpretability of our model. Extensive experiments on benchmark datasets show that the proposed SCG-SP achieves state-of-the-art (SOTA) performance under both relevance and diversity metrics.
Abstract:Trust Region Policy Optimization (TRPO) attractively optimizes the policy while constraining the update of the new policy within a trust region, ensuring the stability and monotonic optimization. Building on the theoretical guarantees of trust region optimization, Proximal Policy Optimization (PPO) successfully enhances the algorithm's sample efficiency and reduces deployment complexity by confining the update of the new and old policies within a surrogate trust region. However, this approach is limited by the fixed setting of surrogate trust region and is not sufficiently adaptive, because there is no theoretical proof that the optimal clipping bound remains consistent throughout the entire training process, truncating the ratio of the new and old policies within surrogate trust region can ensure that the algorithm achieves its best performance, therefore, exploring and researching a dynamic clip bound for improving PPO's performance can be quite beneficial. To design an adaptive clipped trust region and explore the dynamic clip bound's impact on the performance of PPO, we introduce an adaptive PPO-CLIP (Adaptive-PPO) method that dynamically explores and exploits the clip bound using a bandit during the online training process. Furthermore, ample experiments will initially demonstrate that our Adaptive-PPO exhibits sample efficiency and performance compared to PPO-CLIP.
Abstract:On-device ML introduces new security challenges: DNN models become white-box accessible to device users. Based on white-box information, adversaries can conduct effective model stealing (MS) and membership inference attack (MIA). Using Trusted Execution Environments (TEEs) to shield on-device DNN models aims to downgrade (easy) white-box attacks to (harder) black-box attacks. However, one major shortcoming is the sharply increased latency (up to 50X). To accelerate TEE-shield DNN computation with GPUs, researchers proposed several model partition techniques. These solutions, referred to as TEE-Shielded DNN Partition (TSDP), partition a DNN model into two parts, offloading the privacy-insensitive part to the GPU while shielding the privacy-sensitive part within the TEE. This paper benchmarks existing TSDP solutions using both MS and MIA across a variety of DNN models, datasets, and metrics. We show important findings that existing TSDP solutions are vulnerable to privacy-stealing attacks and are not as safe as commonly believed. We also unveil the inherent difficulty in deciding optimal DNN partition configurations (i.e., the highest security with minimal utility cost) for present TSDP solutions. The experiments show that such ``sweet spot'' configurations vary across datasets and models. Based on lessons harvested from the experiments, we present TEESlice, a novel TSDP method that defends against MS and MIA during DNN inference. TEESlice follows a partition-before-training strategy, which allows for accurate separation between privacy-related weights from public weights. TEESlice delivers the same security protection as shielding the entire DNN model inside TEE (the ``upper-bound'' security guarantees) with over 10X less overhead (in both experimental and real-world environments) than prior TSDP solutions and no accuracy loss.
Abstract:Offline reinforcement learning (RL) aims to learn a policy using only pre-collected and fixed data. Although avoiding the time-consuming online interactions in RL, it poses challenges for out-of-distribution (OOD) state actions and often suffers from data inefficiency for training. Despite many efforts being devoted to addressing OOD state actions, the latter (data inefficiency) receives little attention in offline RL. To address this, this paper proposes the cross-domain offline RL, which assumes offline data incorporate additional source-domain data from varying transition dynamics (environments), and expects it to contribute to the offline data efficiency. To do so, we identify a new challenge of OOD transition dynamics, beyond the common OOD state actions issue, when utilizing cross-domain offline data. Then, we propose our method BOSA, which employs two support-constrained objectives to address the above OOD issues. Through extensive experiments in the cross-domain offline RL setting, we demonstrate BOSA can greatly improve offline data efficiency: using only 10\% of the target data, BOSA could achieve {74.4\%} of the SOTA offline RL performance that uses 100\% of the target data. Additionally, we also show BOSA can be effortlessly plugged into model-based offline RL and noising data augmentation techniques (used for generating source-domain data), which naturally avoids the potential dynamics mismatch between target-domain data and newly generated source-domain data.
Abstract:Visually impaired (VI) people often face challenges when performing everyday tasks and identify shopping for clothes as one of the most challenging. Many engage in online shopping, which eliminates some challenges of physical shopping. However, clothes shopping online suffers from many other limitations and barriers. More research is needed to address these challenges, and extant works often base their findings on interviews alone, providing only subjective, recall-biased information. We conducted two complementary studies using both observational and interview approaches to fill a gap in understanding about VI people's behaviour when selecting and purchasing clothes online. Our findings show that shopping websites suffer from inaccurate, misleading, and contradictory clothing descriptions; that VI people mainly rely on (unreliable) search tools and check product descriptions by reviewing customer comments. Our findings also indicate that VI people are hesitant to accept assistance from automated, but that trust in such systems could be improved if researchers can develop systems that better accommodate users' needs and preferences.
Abstract:While text mining and NLP research has been established for decades, there remain gaps in the literature that reports the use of these techniques in building real-world applications. For example, they typically look at single and sometimes simplified tasks, and do not discuss in-depth data heterogeneity and inconsistency that is common in real-world problems or their implication on the development of their methods. Also, few prior work has focused on the healthcare domain. In this work, we describe an industry project that developed text mining and NLP solutions to mine millions of heterogeneous, multilingual procurement documents in the healthcare sector. We extract structured procurement contract data that is used to power a platform for dynamically assessing supplier risks. Our work makes unique contributions in a number of ways. First, we deal with highly heterogeneous, multilingual data and we document our approach to tackle these challenges. This is mainly based on a method that effectively uses domain knowledge and generalises to multiple text mining and NLP tasks and languages. Second, applying this method to mine millions of procurement documents, we develop the first structured procurement contract database that will help facilitate the tendering process. Second, Finally, we discuss lessons learned for practical text mining/NLP development, and make recommendations for future research and practice.
Abstract:Convolutional neural networks (CNN) have demonstrated remarkable performance when the training and testing data are from the same distribution. However, such trained CNN models often largely degrade on testing data which is unseen and Out-Of-the-Distribution (OOD). To address this issue, we propose a novel "Decoupled-Mixup" method to train CNN models for OOD visual recognition. Different from previous work combining pairs of images homogeneously, our method decouples each image into discriminative and noise-prone regions, and then heterogeneously combines these regions of image pairs to train CNN models. Since the observation is that noise-prone regions such as textural and clutter backgrounds are adverse to the generalization ability of CNN models during training, we enhance features from discriminative regions and suppress noise-prone ones when combining an image pair. To further improve the generalization ability of trained models, we propose to disentangle discriminative and noise-prone regions in frequency-based and context-based fashions. Experiment results show the high generalization performance of our method on testing data that are composed of unseen contexts, where our method achieves 85.76\% top-1 accuracy in Track-1 and 79.92\% in Track-2 in the NICO Challenge. The source code is available at https://github.com/HaozheLiu-ST/NICOChallenge-OOD-Classification.
Abstract:The knowledge graph (KG) is an essential form of knowledge representation that has grown in prominence in recent years. Because it concentrates on nominal entities and their relationships, traditional knowledge graphs are static and encyclopedic in nature. On this basis, event knowledge graph (Event KG) models the temporal and spatial dynamics by text processing to facilitate downstream applications, such as question-answering, recommendation and intelligent search. Existing KG research, on the other hand, mostly focuses on text processing and static facts, ignoring the vast quantity of dynamic behavioral information included in photos, movies, and pre-trained neural networks. In addition, no effort has been done to include behavioral intelligence information into the knowledge graph for deep reinforcement learning (DRL) and robot learning. In this paper, we propose a novel dynamic knowledge and skill graph (KSG), and then we develop a basic and specific KSG based on CN-DBpedia. The nodes are divided into entity and attribute nodes, with entity nodes containing the agent, environment, and skill (DRL policy or policy representation), and attribute nodes containing the entity description, pre-train network, and offline dataset. KSG can search for different agents' skills in various environments and provide transferable information for acquiring new skills. This is the first study that we are aware of that looks into dynamic KSG for skill retrieval and learning. Extensive experimental results on new skill learning show that KSG boosts new skill learning efficiency.
Abstract:Synthetic health data have the potential to mitigate privacy concerns when sharing data to support biomedical research and the development of innovative healthcare applications. Modern approaches for data generation based on machine learning, generative adversarial networks (GAN) methods in particular, continue to evolve and demonstrate remarkable potential. Yet there is a lack of a systematic assessment framework to benchmark methods as they emerge and determine which methods are most appropriate for which use cases. In this work, we introduce a generalizable benchmarking framework to appraise key characteristics of synthetic health data with respect to utility and privacy metrics. We apply the framework to evaluate synthetic data generation methods for electronic health records (EHRs) data from two large academic medical centers with respect to several use cases. The results illustrate that there is a utility-privacy tradeoff for sharing synthetic EHR data. The results further indicate that no method is unequivocally the best on all criteria in each use case, which makes it evident why synthetic data generation methods need to be assessed in context.
Abstract:The task of Dense Video Captioning (DVC) aims to generate captions with timestamps for multiple events in one video. Semantic information plays an important role for both localization and description of DVC. We present a semantic-assisted dense video captioning model based on the encoding-decoding framework. In the encoding stage, we design a concept detector to extract semantic information, which is then fused with multi-modal visual features to sufficiently represent the input video. In the decoding stage, we design a classification head, paralleled with the localization and captioning heads, to provide semantic supervision. Our method achieves significant improvements on the YouMakeup dataset under DVC evaluation metrics and achieves high performance in the Makeup Dense Video Captioning (MDVC) task of PIC 4th Challenge.