In this study, we investigate in-context learning (ICL) in document-level event argument extraction (EAE). The paper identifies key challenges in this problem, including example selection, context length limitation, abundance of event types, and the limitation of Chain-of-Thought (CoT) prompting in non-reasoning tasks. To address these challenges, we introduce the Heuristic-Driven Link-of-Analogy (HD-LoA) prompting method. Specifically, we hypothesize and validate that LLMs learn task-specific heuristics from demonstrations via ICL. Building upon this hypothesis, we introduce an explicit heuristic-driven demonstration construction approach, which transforms the haphazard example selection process into a methodical method that emphasizes task heuristics. Additionally, inspired by the analogical reasoning of human, we propose the link-of-analogy prompting, which enables LLMs to process new situations by drawing analogies to known situations, enhancing their adaptability. Extensive experiments show that our method outperforms the existing prompting methods and few-shot supervised learning methods, exhibiting F1 score improvements of 4.53% and 9.38% on the document-level EAE dataset. Furthermore, when applied to sentiment analysis and natural language inference tasks, the HD-LoA prompting achieves accuracy gains of 2.87% and 2.63%, indicating its effectiveness across different tasks.
Category text generation receives considerable attentions since it is beneficial for various natural language processing tasks. Recently, the generative adversarial network (GAN) has attained promising performance in text generation, attributed to its adversarial training process. However, there are several issues in text GANs, including discreteness, training instability, mode collapse, lack of diversity and controllability etc. To address these issues, this paper proposes a novel GAN framework, the feature-aware conditional GAN (FA-GAN), for controllable category text generation. In FA-GAN, the generator has a sequence-to-sequence structure for improving sentence diversity, which consists of three encoders including a special feature-aware encoder and a category-aware encoder, and one relational-memory-core-based decoder with the Gumbel SoftMax activation function. The discriminator has an additional category classification head. To generate sentences with specified categories, the multi-class classification loss is supplemented in the adversarial training. Comprehensive experiments have been conducted, and the results show that FA-GAN consistently outperforms 10 state-of-the-art text generation approaches on 6 text classification datasets. The case study demonstrates that the synthetic sentences generated by FA-GAN can match the required categories and are aware of the features of conditioned sentences, with good readability, fluency, and text authenticity.
Accurate online transient stability prediction is critical for ensuring power system stability when facing disturbances. While traditional transient stablity analysis replies on the time domain simulations can not be quickly adapted to the power grid toplogy change. In order to vectorize high-dimensional power grid topological structure information into low-dimensional node-based graph embedding streaming data, graph embedding dynamic feature (GEDF) has been proposed. The transient stability GEDF-based supervised contrastive learning (GEDF-SCL) model uses supervised contrastive learning to predict transient stability with GEDFs, considering power grid topology information. To evaluate the performance of the proposed GEDF-SCL model, power grids of varying topologies were generated based on the IEEE 39-bus system model. Transient operational data was obtained by simulating N-1 and N-$\bm{m}$-1 contingencies on these generated power system topologies. Test result demonstrated that the GEDF-SCL model can achieve high accuracy in transient stability prediction and adapt well to changing power grid topologies.
Deep learning (DL) algorithms have been widely applied to short-term voltage stability (STVS) assessment in power systems. However, transferring the knowledge learned in one power grid to other power grids with topology changes is still a challenging task. This paper proposed a transferable DL-based model for STVS assessment by constructing the topology-aware voltage dynamic features from raw PMU data. Since the reactive power flow and grid topology are essential to voltage stability, the topology-aware and physics-informed voltage dynamic features are utilized to effectively represent the topological and temporal patterns from post-disturbance system dynamic trajectories. The proposed DL-based STVS assessment model is tested under random operating conditions on the New England 39-bus system. It has 99.99\% classification accuracy of the short-term voltage stability status using the topology-aware and physics-informed voltage dynamic features. In addition to high accuracy, the experiments show good adaptability to PMU errors. Moreover, The proposed STVS assessment method has outstanding performance on new grid topologies after fine-tuning. In particular, the highest accuracy reaches 99.68\% in evaluation, which demonstrates a good knowledge transfer ability of the proposed model for power grid topology change.
Retrieving occlusion relation among objects in a single image is challenging due to sparsity of boundaries in image. We observe two key issues in existing works: firstly, lack of an architecture which can exploit the limited amount of coupling in the decoder stage between the two subtasks, namely occlusion boundary extraction and occlusion orientation prediction, and secondly, improper representation of occlusion orientation. In this paper, we propose a novel architecture called Occlusion-shared and Path-separated Network (OPNet), which solves the first issue by exploiting rich occlusion cues in shared high-level features and structured spatial information in task-specific low-level features. We then design a simple but effective orthogonal occlusion representation (OOR) to tackle the second issue. Our method surpasses the state-of-the-art methods by 6.1%/8.3% Boundary-AP and 6.5%/10% Orientation-AP on standard PIOD/BSDS ownership datasets. Code is available at https://github.com/fengpanhe/MT-ORL.
In this paper, we propose an approach to perform novel view synthesis and depth estimation via dense 3D reconstruction from a single image. Our NeMI unifies Neural radiance fields (NeRF) with Multiplane Images (MPI). Specifically, our NeMI is a general two-dimensional and image-conditioned extension of NeRF, and a continuous depth generalization of MPI. Given a single image as input, our method predicts a 4-channel image (RGB and volume density) at arbitrary depth values to jointly reconstruct the camera frustum and fill in occluded contents. The reconstructed and inpainted frustum can then be easily rendered into novel RGB or depth views using differentiable rendering. Extensive experiments on RealEstate10K, KITTI and Flowers Light Fields show that our NeMI outperforms state-of-the-art by a large margin in novel view synthesis. We also achieve competitive results in depth estimation on iBims-1 and NYU-v2 without annotated depth supervision. Project page available at https://vincentfung13.github.io/projects/nemi/