Abstract:With the proliferation of Large Language Model (LLM) based deepfake audio, there is an urgent need for effective detection methods. Previous deepfake audio generation methods typically involve a multi-step generation process, with the final step using a vocoder to predict the waveform from handcrafted features. However, LLM-based audio is directly generated from discrete neural codecs in an end-to-end generation process, skipping the final step of vocoder processing. This poses a significant challenge for current audio deepfake detection (ADD) models based on vocoder artifacts. To effectively detect LLM-based deepfake audio, we focus on the core of the generation process, the conversion from neural codec to waveform. We propose Codecfake dataset, which is generated by seven representative neural codec methods. Experiment results show that codec-trained ADD models exhibit a 41.406% reduction in average equal error rate compared to vocoder-trained ADD models on the Codecfake test set.
Abstract:Text-to-Audio (TTA) aims to generate audio that corresponds to the given text description, playing a crucial role in media production. The text descriptions in TTA datasets lack rich variations and diversity, resulting in a drop in TTA model performance when faced with complex text. To address this issue, we propose a method called Portable Plug-in Prompt Refiner, which utilizes rich knowledge about textual descriptions inherent in large language models to effectively enhance the robustness of TTA acoustic models without altering the acoustic training set. Furthermore, a Chain-of-Thought that mimics human verification is introduced to enhance the accuracy of audio descriptions, thereby improving the accuracy of generated content in practical applications. The experiments show that our method achieves a state-of-the-art Inception Score (IS) of 8.72, surpassing AudioGen, AudioLDM and Tango.
Abstract:Various threats posed by the progress in text-to-speech (TTS) have prompted the need to reliably trace synthesized speech. However, contemporary approaches to this task involve adding watermarks to the audio separately after generation, a process that hurts both speech quality and watermark imperceptibility. In addition, these approaches are limited in robustness and flexibility. To address these problems, we propose TraceableSpeech, a novel TTS model that directly generates watermarked speech, improving watermark imperceptibility and speech quality. Furthermore, We design the frame-wise imprinting and extraction of watermarks, achieving higher robustness against resplicing attacks and temporal flexibility in operation. Experimental results show that TraceableSpeech outperforms the strong baseline where VALL-E or HiFicodec individually uses WavMark in watermark imperceptibility, speech quality and resilience against resplicing attacks. It also can apply to speech of various durations.
Abstract:The generalization of Fake Audio Detection (FAD) is critical due to the emergence of new spoofing techniques. Traditional FAD methods often focus solely on distinguishing between genuine and known spoofed audio. We propose a Genuine-Focused Learning (GFL) framework guided, aiming for highly generalized FAD, called GFL-FAD. This method incorporates a Counterfactual Reasoning Enhanced Representation (CRER) based on audio reconstruction using the Mask AutoEncoder (MAE) architecture to accurately model genuine audio features. To reduce the influence of spoofed audio during training, we introduce a genuine audio reconstruction loss, maintaining the focus on learning genuine data features. In addition, content-related bottleneck (BN) features are extracted from the MAE to supplement the knowledge of the original audio. These BN features are adaptively fused with CRER to further improve robustness. Our method achieves state-of-the-art performance with an EER of 0.25% on ASVspoof2019 LA.
Abstract:Although current fake audio detection approaches have achieved remarkable success on specific datasets, they often fail when evaluated with datasets from different distributions. Previous studies typically address distribution shift by focusing on using extra data or applying extra loss restrictions during training. However, these methods either require a substantial amount of data or complicate the training process. In this work, we propose a stable learning-based training scheme that involves a Sample Weight Learning (SWL) module, addressing distribution shift by decorrelating all selected features via learning weights from training samples. The proposed portable plug-in-like SWL is easy to apply to multiple base models and generalizes them without using extra data during training. Experiments conducted on the ASVspoof datasets clearly demonstrate the effectiveness of SWL in generalizing different models across three evaluation datasets from different distributions.
Abstract:With the proliferation of deepfake audio, there is an urgent need to investigate their attribution. Current source tracing methods can effectively distinguish in-distribution (ID) categories. However, the rapid evolution of deepfake algorithms poses a critical challenge in the accurate identification of out-of-distribution (OOD) novel deepfake algorithms. In this paper, we propose Real Emphasis and Fake Dispersion (REFD) strategy for audio deepfake algorithm recognition, demonstrating its effectiveness in discriminating ID samples while identifying OOD samples. For effective OOD detection, we first explore current post-hoc OOD methods and propose NSD, a novel OOD approach in identifying novel deepfake algorithms through the similarity consideration of both feature and logits scores. REFD achieves 86.83% F1-score as a single system in Audio Deepfake Detection Challenge 2023 Track3, showcasing its state-of-the-art performance.
Abstract:With the proliferation of Audio Language Model (ALM) based deepfake audio, there is an urgent need for effective detection methods. Unlike traditional deepfake audio generation, which often involves multi-step processes culminating in vocoder usage, ALM directly utilizes neural codec methods to decode discrete codes into audio. Moreover, driven by large-scale data, ALMs exhibit remarkable robustness and versatility, posing a significant challenge to current audio deepfake detection (ADD) models. To effectively detect ALM-based deepfake audio, we focus on the mechanism of the ALM-based audio generation method, the conversion from neural codec to waveform. We initially construct the Codecfake dataset, an open-source large-scale dataset, including two languages, millions of audio samples, and various test conditions, tailored for ALM-based audio detection. Additionally, to achieve universal detection of deepfake audio and tackle domain ascent bias issue of original SAM, we propose the CSAM strategy to learn a domain balanced and generalized minima. Experiment results demonstrate that co-training on Codecfake dataset and vocoded dataset with CSAM strategy yield the lowest average Equal Error Rate (EER) of 0.616% across all test conditions compared to baseline models.
Abstract:Most research in fake audio detection (FAD) focuses on improving performance on standard noise-free datasets. However, in actual situations, there is usually noise interference, which will cause significant performance degradation in FAD systems. To improve the noise robustness, we propose a dual-branch knowledge distillation fake audio detection (DKDFAD) method. Specifically, a parallel data flow of the clean teacher branch and the noisy student branch is designed, and interactive fusion and response-based teacher-student paradigms are proposed to guide the training of noisy data from the data distribution and decision-making perspectives. In the noise branch, speech enhancement is first introduced for denoising, which reduces the interference of strong noise. The proposed interactive fusion combines denoising features and noise features to reduce the impact of speech distortion and seek consistency with the data distribution of clean branch. The teacher-student paradigm maps the student's decision space to the teacher's decision space, making noisy speech behave as clean. In addition, a joint training method is used to optimize the two branches to achieve global optimality. Experimental results based on multiple datasets show that the proposed method performs well in noisy environments and maintains performance in cross-dataset experiments.
Abstract:Audio deepfake detection is an emerging topic in the artificial intelligence community. The second Audio Deepfake Detection Challenge (ADD 2023) aims to spur researchers around the world to build new innovative technologies that can further accelerate and foster research on detecting and analyzing deepfake speech utterances. Different from previous challenges (e.g. ADD 2022), ADD 2023 focuses on surpassing the constraints of binary real/fake classification, and actually localizing the manipulated intervals in a partially fake speech as well as pinpointing the source responsible for generating any fake audio. Furthermore, ADD 2023 includes more rounds of evaluation for the fake audio game sub-challenge. The ADD 2023 challenge includes three subchallenges: audio fake game (FG), manipulation region location (RL) and deepfake algorithm recognition (AR). This paper describes the datasets, evaluation metrics, and protocols. Some findings are also reported in audio deepfake detection tasks.
Abstract:In this paper, we propose a novel self-distillation method for fake speech detection (FSD), which can significantly improve the performance of FSD without increasing the model complexity. For FSD, some fine-grained information is very important, such as spectrogram defects, mute segments, and so on, which are often perceived by shallow networks. However, shallow networks have much noise, which can not capture this very well. To address this problem, we propose using the deepest network instruct shallow network for enhancing shallow networks. Specifically, the networks of FSD are divided into several segments, the deepest network being used as the teacher model, and all shallow networks become multiple student models by adding classifiers. Meanwhile, the distillation path between the deepest network feature and shallow network features is used to reduce the feature difference. A series of experimental results on the ASVspoof 2019 LA and PA datasets show the effectiveness of the proposed method, with significant improvements compared to the baseline.