Abstract:Large language models (LLMs) have been widely recognised as transformative artificial generative intelligence (AGI) technologies due to their capabilities to understand and generate content, including plans with reasoning capabilities. Foundation model based agents derive their autonomy from the capabilities of foundation models, which enable them to autonomously break down a given goal into a set of manageable tasks and orchestrate task execution to meet the goal. Despite the huge efforts put into building foundation model based autonomous agents, the architecture design of the agents has not yet been systematically explored. Also, while there are significant benefits of using autonomous agents for planning and execution, there are serious considerations regarding responsible AI related software quality attributes, such as security and accountability. Therefore, this paper presents a pattern-oriented reference architecture that serves as architecture design guidance and enables responsible-AI-by-design when designing foundation model based autonomous agents. We evaluate the completeness and utility of the proposed reference architecture by mapping it to the architecture of two real-world agents.
Abstract:Recent breakthroughs in pre-trained code models, such as CodeBERT and Codex, have shown their superior performance in various downstream tasks. The correctness and unambiguity of API usage among these code models are crucial for achieving desirable program functionalities, requiring them to learn various API fully qualified names structurally and semantically. Recent studies reveal that even state-of-the-art pre-trained code models struggle with suggesting the correct APIs during code generation. However, the reasons for such poor API usage performance are barely investigated. To address this challenge, we propose using knowledge probing as a means of interpreting code models, which uses cloze-style tests to measure the knowledge stored in models. Our comprehensive study examines a code model's capability of understanding API fully qualified names from two different perspectives: API call and API import. Specifically, we reveal that current code models struggle with understanding API names, with pre-training strategies significantly affecting the quality of API name learning. We demonstrate that natural language context can assist code models in locating Python API names and generalize Python API name knowledge to unseen data. Our findings provide insights into the limitations and capabilities of current pre-trained code models, and suggest that incorporating API structure into the pre-training process can improve automated API usage and code representations. This work provides significance for advancing code intelligence practices and direction for future studies. All experiment results, data and source code used in this work are available at \url{https://doi.org/10.5281/zenodo.7902072}.
Abstract:Language tests measure a person's ability to use a language in terms of listening, speaking, reading, or writing. Such tests play an integral role in academic, professional, and immigration domains, with entities such as educational institutions, professional accreditation bodies, and governments using them to assess candidate language proficiency. Recent advances in Artificial Intelligence (AI) and the discipline of Natural Language Processing have prompted language test providers to explore AI's potential applicability within language testing, leading to transformative activity patterns surrounding language instruction and learning. However, with concerns over AI's trustworthiness, it is imperative to understand the implications of integrating AI into language testing. This knowledge will enable stakeholders to make well-informed decisions, thus safeguarding community well-being and testing integrity. To understand the concerns and effects of AI usage in language tests, we conducted interviews and surveys with English test-takers. To the best of our knowledge, this is the first empirical study aimed at identifying the implications of AI adoption in language tests from a test-taker perspective. Our study reveals test-taker perceptions and behavioral patterns. Specifically, we identify that AI integration may enhance perceptions of fairness, consistency, and availability. Conversely, it might incite mistrust regarding reliability and interactivity aspects, subsequently influencing the behaviors and well-being of test-takers. These insights provide a better understanding of potential societal implications and assist stakeholders in making informed decisions concerning AI usage in language testing.
Abstract:The Right to be Forgotten (RTBF) was first established as the result of the ruling of Google Spain SL, Google Inc. v AEPD, Mario Costeja Gonz\'alez, and was later included as the Right to Erasure under the General Data Protection Regulation (GDPR) of European Union to allow individuals the right to request personal data be deleted by organizations. Specifically for search engines, individuals can send requests to organizations to exclude their information from the query results. With the recent development of Large Language Models (LLMs) and their use in chatbots, LLM-enabled software systems have become popular. But they are not excluded from the RTBF. Compared with the indexing approach used by search engines, LLMs store, and process information in a completely different way. This poses new challenges for compliance with the RTBF. In this paper, we explore these challenges and provide our insights on how to implement technical solutions for the RTBF, including the use of machine unlearning, model editing, and prompting engineering.
Abstract:With the emergence of deep learning techniques, smartphone apps are now embedded on-device AI features for enabling advanced tasks like speech translation, to attract users and increase market competitiveness. A good interaction design is important to make an AI feature usable and understandable. However, AI features have their unique challenges like sensitiveness to the input, dynamic behaviours and output uncertainty. Existing guidelines and tools either do not cover AI features or consider mobile apps which are confirmed by our informal interview with professional designers. To address these issues, we conducted the first empirical study to explore user-AI-interaction in mobile apps. We aim to understand the status of on-device AI usage by investigating 176 AI apps from 62,822 apps. We identified 255 AI features and summarised 759 implementations into three primary interaction pattern types. We further implemented our findings into a multi-faceted search-enabled gallery. The results of the user study demonstrate the usefulness of our findings.
Abstract:The increasingly popular adoption of source code in many critical tasks motivates the development of data augmentation (DA) techniques to enhance training data and improve various capabilities (e.g., robustness and generalizability) of these models. Although a series of DA methods have been proposed and tailored for source code models, there lacks a comprehensive survey and examination to understand their effectiveness and implications. This paper fills this gap by conducting a comprehensive and integrative survey of data augmentation for source code, wherein we systematically compile and encapsulate existing literature to provide a comprehensive overview of the field. We start by constructing a taxonomy of DA for source code models model approaches, followed by a discussion on prominent, methodologically illustrative approaches. Next, we highlight the general strategies and techniques to optimize the DA quality. Subsequently, we underscore techniques that find utility in widely-accepted source code scenarios and downstream tasks. Finally, we outline the prevailing challenges and potential opportunities for future research. In essence, this paper endeavors to demystify the corpus of existing literature on DA for source code models, and foster further exploration in this sphere. Complementing this, we present a continually updated GitHub repository that hosts a list of update-to-date papers on DA for source code models, accessible at \url{https://github.com/terryyz/DataAug4Code}.
Abstract:Virtual assistants have been widely used by mobile phone users in recent years. Although their capabilities of processing user intents have been developed rapidly, virtual assistants in most platforms are only capable of handling pre-defined high-level tasks supported by extra manual efforts of developers. However, instance-level user intents containing more detailed objectives with complex practical situations, are yet rarely studied so far. In this paper, we explore virtual assistants capable of processing instance-level user intents based on pixels of application screens, without the requirements of extra extensions on the application side. We propose a novel cross-modal deep learning pipeline, which understands the input vocal or textual instance-level user intents, predicts the targeting operational area, and detects the absolute button area on screens without any metadata of applications. We conducted a user study with 10 participants to collect a testing dataset with instance-level user intents. The testing dataset is then utilized to evaluate the performance of our model, which demonstrates that our model is promising with the achievement of 64.43% accuracy on our testing dataset.
Abstract:The recent release of large language model (LLM) based chatbots, such as ChatGPT, has attracted significant attention on foundation models. It is widely believed that foundation models will serve as the fundamental building blocks for future AI systems. As foundation models are in their early stages, the design of foundation model based systems has not yet been systematically explored. There is little understanding about the impact of introducing foundation models in software architecture. Therefore, in this paper, we propose a taxonomy of foundation model based systems, which classifies and compares the characteristics of foundation models and design options of foundation model based systems. Our taxonomy comprises three categories: foundation model pretraining and fine-tuning, architecture design of foundation model based systems, and responsible-AI-by-design. This taxonomy provides concrete guidance for making major design decisions when designing foundation model based systems and highlights trade-offs arising from design decisions.
Abstract:The release of ChatGPT, Bard, and other large language model (LLM)-based chatbots has drawn huge attention on foundations models worldwide. There is a growing trend that foundation models will serve as the fundamental building blocks for most of the future AI systems. However, incorporating foundation models in AI systems raises significant concerns about responsible AI due to their black box nature and rapidly advancing super-intelligence. Additionally, the foundation model's growing capabilities can eventually absorb the other components of AI systems, introducing the moving boundary and interface evolution challenges in architecture design. To address these challenges, this paper proposes a pattern-oriented responsible-AI-by-design reference architecture for designing foundation model-based AI systems. Specially, the paper first presents an architecture evolution of AI systems in the era of foundation models, from "foundation-model-as-a-connector" to "foundation-model-as-a-monolithic architecture". The paper then identifies the key design decision points and proposes a pattern-oriented reference architecture to provide reusable responsible-AI-by-design architectural solutions to address the new architecture evolution and responsible AI challenges. The patterns can be embedded as product features of foundation model-based AI systems and can enable organisations to capitalise on the potential of foundation models while minimising associated risks.
Abstract:The right to be forgotten (RTBF) is motivated by the desire of people not to be perpetually disadvantaged by their past deeds. For this, data deletion needs to be deep and permanent, and should be removed from machine learning models. Researchers have proposed machine unlearning algorithms which aim to erase specific data from trained models more efficiently. However, these methods modify how data is fed into the model and how training is done, which may subsequently compromise AI ethics from the fairness perspective. To help software engineers make responsible decisions when adopting these unlearning methods, we present the first study on machine unlearning methods to reveal their fairness implications. We designed and conducted experiments on two typical machine unlearning methods (SISA and AmnesiacML) along with a retraining method (ORTR) as baseline using three fairness datasets under three different deletion strategies. Experimental results show that under non-uniform data deletion, SISA leads to better fairness compared with ORTR and AmnesiacML, while initial training and uniform data deletion do not necessarily affect the fairness of all three methods. These findings have exposed an important research problem in software engineering, and can help practitioners better understand the potential trade-offs on fairness when considering solutions for RTBF.