Abstract:Infrastructure-as-Code (IaC) generation holds significant promise for automating cloud infrastructure provisioning. Recent advances in Large Language Models (LLMs) present a promising opportunity to democratize IaC development by generating deployable infrastructure templates from natural language descriptions, but current evaluation focuses on syntactic correctness while ignoring deployability, the fatal measure of IaC template utility. We address this gap through two contributions: (1) IaCGen, an LLM-based deployability-centric framework that uses iterative feedback mechanism to generate IaC templates, and (2) DPIaC-Eval, a deployability-centric IaC template benchmark consists of 153 real-world scenarios that can evaluate syntax, deployment, user intent, and security. Our evaluation reveals that state-of-the-art LLMs initially performed poorly, with Claude-3.5 and Claude-3.7 achieving only 30.2% and 26.8% deployment success on the first attempt respectively. However, IaCGen transforms this performance dramatically: all evaluated models reach over 90% passItr@25, with Claude-3.5 and Claude-3.7 achieving 98% success rate. Despite these improvements, critical challenges remain in user intent alignment (25.2% accuracy) and security compliance (8.4% pass rate), highlighting areas requiring continued research. Our work provides the first comprehensive assessment of deployability-centric IaC template generation and establishes a foundation for future research.
Abstract:Large Language Models (LLMs) are known to lack cultural representation and overall diversity in their generations, from expressing opinions to answering factual questions. To mitigate this problem, we propose multilingual prompting: a prompting method which generates several variations of a base prompt with added cultural and linguistic cues from several cultures, generates responses, and then combines the results. Building on evidence that LLMs have language-specific knowledge, multilingual prompting seeks to increase diversity by activating a broader range of cultural knowledge embedded in model training data. Through experiments across multiple models (GPT-4o, GPT-4o-mini, LLaMA 70B, and LLaMA 8B), we show that multilingual prompting consistently outperforms existing diversity-enhancing techniques such as high-temperature sampling, step-by-step recall, and personas prompting. Further analyses show that the benefits of multilingual prompting vary with language resource level and model size, and that aligning the prompting language with the cultural cues reduces hallucination about culturally-specific information.
Abstract:Knots in wood are critical to both aesthetics and structural integrity, making their detection and pairing essential in timber processing. However, traditional manual annotation was labor-intensive and inefficient, necessitating automation. This paper proposes a lightweight and fully automated pipeline for knot detection and pairing based on machine learning techniques. In the detection stage, high-resolution surface images of wooden boards were collected using industrial-grade cameras, and a large-scale dataset was manually annotated and preprocessed. After the transfer learning, the YOLOv8l achieves an mAP@0.5 of 0.887. In the pairing stage, detected knots were analyzed and paired based on multidimensional feature extraction. A triplet neural network was used to map the features into a latent space, enabling clustering algorithms to identify and pair corresponding knots. The triplet network with learnable weights achieved a pairing accuracy of 0.85. Further analysis revealed that he distances from the knot's start and end points to the bottom of the wooden board, and the longitudinal coordinates play crucial roles in achieving high pairing accuracy. Our experiments validate the effectiveness of the proposed solution, demonstrating the potential of AI in advancing wood science and industry.
Abstract:As Large Language Models (LLMs) become integral to scientific workflows, concerns over the confidentiality and ethical handling of confidential data have emerged. This paper explores data exposure risks through LLM-powered scientific tools, which can inadvertently leak confidential information, including intellectual property and proprietary data, from scientists' perspectives. We propose "DataShield", a framework designed to detect confidential data leaks, summarize privacy policies, and visualize data flow, ensuring alignment with organizational policies and procedures. Our approach aims to inform scientists about data handling practices, enabling them to make informed decisions and protect sensitive information. Ongoing user studies with scientists are underway to evaluate the framework's usability, trustworthiness, and effectiveness in tackling real-world privacy challenges.
Abstract:Language tests measure a person's ability to use a language in terms of listening, speaking, reading, or writing. Such tests play an integral role in academic, professional, and immigration domains, with entities such as educational institutions, professional accreditation bodies, and governments using them to assess candidate language proficiency. Recent advances in Artificial Intelligence (AI) and the discipline of Natural Language Processing have prompted language test providers to explore AI's potential applicability within language testing, leading to transformative activity patterns surrounding language instruction and learning. However, with concerns over AI's trustworthiness, it is imperative to understand the implications of integrating AI into language testing. This knowledge will enable stakeholders to make well-informed decisions, thus safeguarding community well-being and testing integrity. To understand the concerns and effects of AI usage in language tests, we conducted interviews and surveys with English test-takers. To the best of our knowledge, this is the first empirical study aimed at identifying the implications of AI adoption in language tests from a test-taker perspective. Our study reveals test-taker perceptions and behavioral patterns. Specifically, we identify that AI integration may enhance perceptions of fairness, consistency, and availability. Conversely, it might incite mistrust regarding reliability and interactivity aspects, subsequently influencing the behaviors and well-being of test-takers. These insights provide a better understanding of potential societal implications and assist stakeholders in making informed decisions concerning AI usage in language testing.
Abstract:The Right to be Forgotten (RTBF) was first established as the result of the ruling of Google Spain SL, Google Inc. v AEPD, Mario Costeja Gonz\'alez, and was later included as the Right to Erasure under the General Data Protection Regulation (GDPR) of European Union to allow individuals the right to request personal data be deleted by organizations. Specifically for search engines, individuals can send requests to organizations to exclude their information from the query results. With the recent development of Large Language Models (LLMs) and their use in chatbots, LLM-enabled software systems have become popular. But they are not excluded from the RTBF. Compared with the indexing approach used by search engines, LLMs store, and process information in a completely different way. This poses new challenges for compliance with the RTBF. In this paper, we explore these challenges and provide our insights on how to implement technical solutions for the RTBF, including the use of machine unlearning, model editing, and prompting engineering.
Abstract:The right to be forgotten (RTBF) is motivated by the desire of people not to be perpetually disadvantaged by their past deeds. For this, data deletion needs to be deep and permanent, and should be removed from machine learning models. Researchers have proposed machine unlearning algorithms which aim to erase specific data from trained models more efficiently. However, these methods modify how data is fed into the model and how training is done, which may subsequently compromise AI ethics from the fairness perspective. To help software engineers make responsible decisions when adopting these unlearning methods, we present the first study on machine unlearning methods to reveal their fairness implications. We designed and conducted experiments on two typical machine unlearning methods (SISA and AmnesiacML) along with a retraining method (ORTR) as baseline using three fairness datasets under three different deletion strategies. Experimental results show that under non-uniform data deletion, SISA leads to better fairness compared with ORTR and AmnesiacML, while initial training and uniform data deletion do not necessarily affect the fairness of all three methods. These findings have exposed an important research problem in software engineering, and can help practitioners better understand the potential trade-offs on fairness when considering solutions for RTBF.