Abstract:This paper proposes a structure-aware driven scheduling graph modeling method to improve the accuracy and representation capability of anomaly identification in scheduling behaviors of complex systems. The method first designs a structure-guided scheduling graph construction mechanism that integrates task execution stages, resource node states, and scheduling path information to build dynamically evolving scheduling behavior graphs, enhancing the model's ability to capture global scheduling relationships. On this basis, a multi-scale graph semantic aggregation module is introduced to achieve semantic consistency modeling of scheduling features through local adjacency semantic integration and global topology alignment, thereby strengthening the model's capability to capture abnormal features in complex scenarios such as multi-task concurrency, resource competition, and stage transitions. Experiments are conducted on a real scheduling dataset with multiple scheduling disturbance paths set to simulate different types of anomalies, including structural shifts, resource changes, and task delays. The proposed model demonstrates significant performance advantages across multiple metrics, showing a sensitive response to structural disturbances and semantic shifts. Further visualization analysis reveals that, under the combined effect of structure guidance and semantic aggregation, the scheduling behavior graph exhibits stronger anomaly separability and pattern representation, validating the effectiveness and adaptability of the method in scheduling anomaly detection tasks.
Abstract:Generative, explainable, and flexible recommender systems, derived using Large Language Models (LLM) are promising and poorly adapted to the cold-start user situation, where there is little to no history of interaction. The current solutions i.e. supervised fine-tuning and collaborative filtering are dense-user-item focused and would be expensive to maintain and update. This paper introduces a meta-learning framework, that can be used to perform parameter-efficient prompt-tuning, to effectively personalize LLM-based recommender systems quickly at cold-start. The model learns soft prompt embeddings with first-order (Reptile) and second-order (MAML) optimization by treating each of the users as the tasks. As augmentations to the input tokens, these learnable vectors are the differentiable control variables that represent user behavioral priors. The prompts are meta-optimized through episodic sampling, inner-loop adaptation, and outer-loop generalization. On MovieLens-1M, Amazon Reviews, and Recbole, we can see that our adaptive model outperforms strong baselines in NDCG@10, HR@10, and MRR, and it runs in real-time (i.e., below 300 ms) on consumer GPUs. Zero-history personalization is also supported by this scalable solution, and its 275 ms rate of adaptation allows successful real-time risk profiling of financial systems by shortening detection latency and improving payment network stability. Crucially, the 275 ms adaptation capability can enable real-time risk profiling for financial institutions, reducing systemic vulnerability detection latency significantly versus traditional compliance checks. By preventing contagion in payment networks (e.g., Fedwire), the framework strengthens national financial infrastructure resilience.