Abstract:The strong general capabilities of Large Language Models (LLMs) bring potential ethical risks if they are unrestrictedly accessible to malicious users. Token-level watermarking inserts watermarks in the generated texts by altering the token probability distributions with a private random number generator seeded by its prefix tokens. However, this watermarking algorithm alters the logits during generation, which can lead to a downgraded text quality if it chooses to promote tokens that are less relevant given the input. In this work, we propose to improve the quality of texts generated by a watermarked language model by Watermarking with Importance Scoring (WIS). At each generation step, we estimate the importance of the token to generate, and prevent it from being impacted by watermarking if it is important for the semantic correctness of the output. We further propose three methods to predict importance scoring, including a perturbation-based method and two model-based methods. Empirical experiments show that our method can generate texts with better quality with comparable level of detection rate.
Abstract:We introduce a method to convert Physics-Informed Neural Networks (PINNs), commonly used in scientific machine learning, to Spiking Neural Networks (SNNs), which are expected to have higher energy efficiency compared to traditional Artificial Neural Networks (ANNs). We first extend the calibration technique of SNNs to arbitrary activation functions beyond ReLU, making it more versatile, and we prove a theorem that ensures the effectiveness of the calibration. We successfully convert PINNs to SNNs, enabling computational efficiency for diverse regression tasks in solving multiple differential equations, including the unsteady Navier-Stokes equations. We demonstrate great gains in terms of overall efficiency, including Separable PINNs (SPINNs), which accelerate the training process. Overall, this is the first work of this kind and the proposed method achieves relatively good accuracy with low spike rates.
Abstract:In this paper, we propose FinVis-GPT, a novel multimodal large language model (LLM) specifically designed for financial chart analysis. By leveraging the power of LLMs and incorporating instruction tuning and multimodal capabilities, FinVis-GPT is capable of interpreting financial charts and providing valuable analysis. To train FinVis-GPT, a financial task oriented dataset was generated for pre-training alignment and instruction tuning, comprising various types of financial charts and their corresponding descriptions. We evaluate the model performance via several case studies due to the time limit, and the promising results demonstrated that FinVis-GPT is superior in various financial chart related tasks, including generating descriptions, answering questions and predicting future market trends, surpassing existing state-of-the-art multimodal LLMs. The proposed FinVis-GPT serves as a pioneering effort in utilizing multimodal LLMs in the finance domain and our generated dataset will be release for public use in the near future to speedup related research.
Abstract:Telescopes capture images with a particular point spread function (PSF). Inferring what an image would have looked like with a much sharper PSF, a problem known as PSF deconvolution, is ill-posed because PSF convolution is not an invertible transformation. Deep generative models are appealing for PSF deconvolution because they can infer a posterior distribution over candidate images that, if convolved with the PSF, could have generated the observation. However, classical deep generative models such as VAEs and GANs often provide inadequate sample diversity. As an alternative, we propose a classifier-free conditional diffusion model for PSF deconvolution of galaxy images. We demonstrate that this diffusion model captures a greater diversity of possible deconvolutions compared to a conditional VAE.
Abstract:Extensive studies have shown that deep learning models are vulnerable to adversarial and natural noises, yet little is known about model robustness on noises caused by different system implementations. In this paper, we for the first time introduce SysNoise, a frequently occurred but often overlooked noise in the deep learning training-deployment cycle. In particular, SysNoise happens when the source training system switches to a disparate target system in deployments, where various tiny system mismatch adds up to a non-negligible difference. We first identify and classify SysNoise into three categories based on the inference stage; we then build a holistic benchmark to quantitatively measure the impact of SysNoise on 20+ models, comprehending image classification, object detection, instance segmentation and natural language processing tasks. Our extensive experiments revealed that SysNoise could bring certain impacts on model robustness across different tasks and common mitigations like data augmentation and adversarial training show limited effects on it. Together, our findings open a new research topic and we hope this work will raise research attention to deep learning deployment systems accounting for model performance. We have open-sourced the benchmark and framework at https://modeltc.github.io/systemnoise_web.
Abstract:Offline constrained reinforcement learning (RL) aims to learn a policy that maximizes the expected cumulative reward subject to constraints on expected value of cost functions using an existing dataset. In this paper, we propose Primal-Dual-Critic Algorithm (PDCA), a novel algorithm for offline constrained RL with general function approximation. PDCA runs a primal-dual algorithm on the Lagrangian function estimated by critics. The primal player employs a no-regret policy optimization oracle to maximize the Lagrangian estimate given any choices of the critics and the dual player. The dual player employs a no-regret online linear optimization oracle to minimize the Lagrangian estimate given any choices of the critics and the primal player. We show that PDCA can successfully find a near saddle point of the Lagrangian, which is nearly optimal for the constrained RL problem. Unlike previous work that requires concentrability and strong Bellman completeness assumptions, PDCA only requires concentrability and value function/marginalized importance weight realizability assumptions.
Abstract:Spiking Neural Networks (SNNs) have recently attracted widespread research interest as an efficient alternative to traditional Artificial Neural Networks (ANNs) because of their capability to process sparse and binary spike information and avoid expensive multiplication operations. Although the efficiency of SNNs can be realized on the In-Memory Computing (IMC) architecture, we show that the energy cost and latency of SNNs scale linearly with the number of timesteps used on IMC hardware. Therefore, in order to maximize the efficiency of SNNs, we propose input-aware Dynamic Timestep SNN (DT-SNN), a novel algorithmic solution to dynamically determine the number of timesteps during inference on an input-dependent basis. By calculating the entropy of the accumulated output after each timestep, we can compare it to a predefined threshold and decide if the information processed at the current timestep is sufficient for a confident prediction. We deploy DT-SNN on an IMC architecture and show that it incurs negligible computational overhead. We demonstrate that our method only uses 1.46 average timesteps to achieve the accuracy of a 4-timestep static SNN while reducing the energy-delay-product by 80%.
Abstract:Spiking Neural Networks (SNNs) have gained increasing attention as energy-efficient neural networks owing to their binary and asynchronous computation. However, their non-linear activation, that is Leaky-Integrate-and-Fire (LIF) neuron, requires additional memory to store a membrane voltage to capture the temporal dynamics of spikes. Although the required memory cost for LIF neurons significantly increases as the input dimension goes larger, a technique to reduce memory for LIF neurons has not been explored so far. To address this, we propose a simple and effective solution, EfficientLIF-Net, which shares the LIF neurons across different layers and channels. Our EfficientLIF-Net achieves comparable accuracy with the standard SNNs while bringing up to ~4.3X forward memory efficiency and ~21.9X backward memory efficiency for LIF neurons. We conduct experiments on various datasets including CIFAR10, CIFAR100, TinyImageNet, ImageNet-100, and N-Caltech101. Furthermore, we show that our approach also offers advantages on Human Activity Recognition (HAR) datasets, which heavily rely on temporal information.
Abstract:Due to increasing interest in adapting models on resource-constrained edges, parameter-efficient transfer learning has been widely explored. Among various methods, Visual Prompt Tuning (VPT), prepending learnable prompts to input space, shows competitive fine-tuning performance compared to training of full network parameters. However, VPT increases the number of input tokens, resulting in additional computational overhead. In this paper, we analyze the impact of the number of prompts on fine-tuning performance and self-attention operation in a vision transformer architecture. Through theoretical and empirical analysis we show that adding more prompts does not lead to linear performance improvement. Further, we propose a Prompt Condensation (PC) technique that aims to prevent performance degradation from using a small number of prompts. We validate our methods on FGVC and VTAB-1k tasks and show that our approach reduces the number of prompts by ~70% while maintaining accuracy.
Abstract:We propose Multiplier-less INTeger (MINT) quantization, an efficient uniform quantization scheme for the weights and membrane potentials in spiking neural networks (SNNs). Unlike prior SNN quantization works, MINT quantizes the memory-hungry membrane potentials to extremely low bit-width (2-bit) to significantly reduce the total memory footprint. Additionally, MINT quantization shares the quantization scale between the weights and membrane potentials, eliminating the need for multipliers and floating arithmetic units, which are required by the standard uniform quantization. Experimental results demonstrate that our proposed method achieves accuracy that matches other state-of-the-art SNN quantization works while outperforming them on total memory footprint and hardware cost at deployment time. For instance, 2-bit MINT VGG-16 achieves 48.6% accuracy on TinyImageNet (0.28% better than the full-precision baseline) with approximately 93.8% reduction in total memory footprint from the full-precision model; meanwhile, our model reduces area by 93% and dynamic power by 98% compared to other SNN quantization counterparts.