Abstract:We develop a data-driven framework for discovering constitutive relations in models of fluid flow and scalar transport. Our approach infers unknown closure terms in the governing equations (gray-box discovery) under the assumption that the temporal derivative, convective transport, and pressure-gradient contributions are known. The formulation is rooted in a variational principle from nonequilibrium thermodynamics, where the dynamics is defined by a free-energy functional and a dissipation functional. The unknown constitutive terms arise as functional derivatives of these functionals with respect to the state variables. To enable a flexible and structured model discovery, the free-energy and dissipation functionals are parameterized using neural networks, while their functional derivatives are obtained via automatic differentiation. This construction enforces thermodynamic consistency by design, ensuring monotonic decay of the total free energy and non-negative entropy production. The resulting method, termed GIMLET (Generalizable and Interpretable Model Learning through Embedded Thermodynamics), avoids reliance on a predefined library of candidate functions, unlike sparse regression or symbolic identification approaches. The learned models are generalizable in that functionals identified from one dataset can be transferred to distinct datasets governed by the same underlying equations. Moreover, the inferred free-energy and dissipation functions provide direct physical interpretability of the learned dynamics. The framework is demonstrated on several benchmark systems, including the viscous Burgers equation, the Kuramoto--Sivashinsky equation, and the incompressible Navier--Stokes equations for both Newtonian and non-Newtonian fluids.
Abstract:Fiber reinforcement and polymer matrix respond differently to manufacturing conditions due to mismatch in coefficient of thermal expansion and matrix shrinkage during curing of thermosets. These heterogeneities generate residual stresses over multiple length scales, whose partial release leads to process-induced deformation (PID), requiring accurate prediction and mitigation via optimized non-isothermal cure cycles. This study considers a unidirectional AS4 carbon fiber/amine bi-functional epoxy prepreg and models PID using a two-mechanism framework that accounts for thermal expansion/shrinkage and cure shrinkage. The model is validated against manufacturing trials to identify initial and boundary conditions, then used to generate PID responses for a diverse set of non-isothermal cure cycles (time-temperature profiles). Building on this physics-based foundation, we develop a data-driven surrogate based on Deep Operator Networks (DeepONets). A DeepONet is trained on a dataset combining high-fidelity simulations with targeted experimental measurements of PID. We extend this to a Feature-wise Linear Modulation (FiLM) DeepONet, where branch-network features are modulated by external parameters, including the initial degree of cure, enabling prediction of time histories of degree of cure, viscosity, and deformation. Because experimental data are available only at limited time instances (for example, final deformation), we use transfer learning: simulation-trained trunk and branch networks are fixed and only the final layer is updated using measured final deformation. Finally, we augment the framework with Ensemble Kalman Inversion (EKI) to quantify uncertainty under experimental conditions and to support optimization of cure schedules for reduced PID in composites.
Abstract:The convergence behavior of classical iterative solvers for parametric partial differential equations (PDEs) is often highly sensitive to the domain and specific discretization of PDEs. Previously, we introduced hybrid solvers by combining the classical solvers with neural operators for a specific geometry 1, but they tend to under-perform in geometries not encountered during training. To address this challenge, we introduce Geo-DeepONet, a geometry-aware deep operator network that incorporates domain information extracted from finite element discretizations. Geo-DeepONet enables accurate operator learning across arbitrary unstructured meshes without requiring retraining. Building on this, we develop a class of geometry-aware hybrid preconditioned iterative solvers by coupling Geo-DeepONet with traditional methods such as relaxation schemes and Krylov subspace algorithms. Through numerical experiments on parametric PDEs posed over diverse unstructured domains, we demonstrate the enhanced robustness and efficiency of the proposed hybrid solvers for multiple real-world applications.
Abstract:Accurate chemical kinetics modeling is essential for combustion simulations, as it governs the evolution of complex reaction pathways and thermochemical states. In this work, we introduce Kinetic-Mamba, a Mamba-based neural operator framework that integrates the expressive power of neural operators with the efficient temporal modeling capabilities of Mamba architectures. The framework comprises three complementary models: (i) a standalone Mamba model that predicts the time evolution of thermochemical state variables from given initial conditions; (ii) a constrained Mamba model that enforces mass conservation while learning the state dynamics; and (iii) a regime-informed architecture employing two standalone Mamba models to capture dynamics across temperature-dependent regimes. We additionally develop a latent Kinetic-Mamba variant that evolves dynamics in a reduced latent space and reconstructs the full state on the physical manifold. We evaluate the accuracy and robustness of Kinetic-Mamba using both time-decomposition and recursive-prediction strategies. We further assess the extrapolation capabilities of the model on varied out-of-distribution datasets. Computational experiments on Syngas and GRI-Mech 3.0 reaction mechanisms demonstrate that our framework achieves high fidelity in predicting complex kinetic behavior using only the initial conditions of the state variables.




Abstract:We propose a novel neural preconditioned Newton (NP-Newton) method for solving parametric nonlinear systems of equations. To overcome the stagnation or instability of Newton iterations caused by unbalanced nonlinearities, we introduce a fixed-point neural operator (FPNO) that learns the direct mapping from the current iterate to the solution by emulating fixed-point iterations. Unlike traditional line-search or trust-region algorithms, the proposed FPNO adaptively employs negative step sizes to effectively mitigate the effects of unbalanced nonlinearities. Through numerical experiments we demonstrate the computational efficiency and robustness of the proposed NP-Newton method across multiple real-world applications, especially for very strong nonlinearities.
Abstract:Spiking neural networks (SNNs) offer biologically inspired computation but remain underexplored for continuous regression tasks in scientific machine learning. In this work, we introduce and systematically evaluate Quadratic Integrate-and-Fire (QIF) neurons as an alternative to the conventional Leaky Integrate-and-Fire (LIF) model in both directly trained SNNs and ANN-to-SNN conversion frameworks. The QIF neuron exhibits smooth and differentiable spiking dynamics, enabling gradient-based training and stable optimization within architectures such as multilayer perceptrons (MLPs), Deep Operator Networks (DeepONets), and Physics-Informed Neural Networks (PINNs). Across benchmarks on function approximation, operator learning, and partial differential equation (PDE) solving, QIF-based networks yield smoother, more accurate, and more stable predictions than their LIF counterparts, which suffer from discontinuous time-step responses and jagged activation surfaces. These results position the QIF neuron as a computational bridge between spiking and continuous-valued deep learning, advancing the integration of neuroscience-inspired dynamics into physics-informed and operator-learning frameworks.
Abstract:Residual-based adaptive strategies are widely used in scientific machine learning but remain largely heuristic. We introduce a unifying variational framework that formalizes these methods by integrating convex transformations of the residual. Different transformations correspond to distinct objective functionals: exponential weights target the minimization of uniform error, while linear weights recover the minimization of quadratic error. Within this perspective, adaptive weighting is equivalent to selecting sampling distributions that optimize the primal objective, thereby linking discretization choices directly to error metrics. This principled approach yields three benefits: (1) it enables systematic design of adaptive schemes across norms, (2) reduces discretization error through variance reduction of the loss estimator, and (3) enhances learning dynamics by improving the gradient signal-to-noise ratio. Extending the framework to operator learning, we demonstrate substantial performance gains across optimizers and architectures. Our results provide a theoretical justification of residual-based adaptivity and establish a foundation for principled discretization and training strategies.




Abstract:Neural operators are promising surrogates for dynamical systems but when trained with standard L2 losses they tend to oversmooth fine-scale turbulent structures. Here, we show that combining operator learning with generative modeling overcomes this limitation. We consider three practical turbulent-flow challenges where conventional neural operators fail: spatio-temporal super-resolution, forecasting, and sparse flow reconstruction. For Schlieren jet super-resolution, an adversarially trained neural operator (adv-NO) reduces the energy-spectrum error by 15x while preserving sharp gradients at neural operator-like inference cost. For 3D homogeneous isotropic turbulence, adv-NO trained on only 160 timesteps from a single trajectory forecasts accurately for five eddy-turnover times and offers 114x wall-clock speed-up at inference than the baseline diffusion-based forecasters, enabling near-real-time rollouts. For reconstructing cylinder wake flows from highly sparse Particle Tracking Velocimetry-like inputs, a conditional generative model infers full 3D velocity and pressure fields with correct phase alignment and statistics. These advances enable accurate reconstruction and forecasting at low compute cost, bringing near-real-time analysis and control within reach in experimental and computational fluid mechanics. See our project page: https://vivekoommen.github.io/Gen4Turb/
Abstract:We propose a new deflation strategy to accelerate the convergence of the preconditioned conjugate gradient(PCG) method for solving parametric large-scale linear systems of equations. Unlike traditional deflation techniques that rely on eigenvector approximations or recycled Krylov subspaces, we generate the deflation subspaces using operator learning, specifically the Deep Operator Network~(DeepONet). To this aim, we introduce two complementary approaches for assembling the deflation operators. The first approach approximates near-null space vectors of the discrete PDE operator using the basis functions learned by the DeepONet. The second approach directly leverages solutions predicted by the DeepONet. To further enhance convergence, we also propose several strategies for prescribing the sparsity pattern of the deflation operator. A comprehensive set of numerical experiments encompassing steady-state, time-dependent, scalar, and vector-valued problems posed on both structured and unstructured geometries is presented and demonstrates the effectiveness of the proposed DeepONet-based deflated PCG method, as well as its generalization across a wide range of model parameters and problem resolutions.
Abstract:Physics-Informed Kolmogorov-Arnold Networks (PIKANs) are gaining attention as an effective counterpart to the original multilayer perceptron-based Physics-Informed Neural Networks (PINNs). Both representation models can address inverse problems and facilitate gray-box system identification. However, a comprehensive understanding of their performance in terms of accuracy and speed remains underexplored. In particular, we introduce a modified PIKAN architecture, tanh-cPIKAN, which is based on Chebyshev polynomials for parametrization of the univariate functions with an extra nonlinearity for enhanced performance. We then present a systematic investigation of how choices of the optimizer, representation, and training configuration influence the performance of PINNs and PIKANs in the context of systems pharmacology modeling. We benchmark a wide range of first-order, second-order, and hybrid optimizers, including various learning rate schedulers. We use the new Optax library to identify the most effective combinations for learning gray-boxes under ill-posed, non-unique, and data-sparse conditions. We examine the influence of model architecture (MLP vs. KAN), numerical precision (single vs. double), the need for warm-up phases for second-order methods, and sensitivity to the initial learning rate. We also assess the optimizer scalability for larger models and analyze the trade-offs introduced by JAX in terms of computational efficiency and numerical accuracy. Using two representative systems pharmacology case studies - a pharmacokinetics model and a chemotherapy drug-response model - we offer practical guidance on selecting optimizers and representation models/architectures for robust and efficient gray-box discovery. Our findings provide actionable insights for improving the training of physics-informed networks in biomedical applications and beyond.