Abstract:Human motion synthesis aims to generate plausible human motion sequences, which has raised widespread attention in computer animation. Recent score-based generative models (SGMs) have demonstrated impressive results on this task. However, their training process involves complex curvature trajectories, leading to unstable training process. In this paper, we propose a Deterministic-to-Stochastic Diverse Latent Feature Mapping (DSDFM) method for human motion synthesis. DSDFM consists of two stages. The first human motion reconstruction stage aims to learn the latent space distribution of human motions. The second diverse motion generation stage aims to build connections between the Gaussian distribution and the latent space distribution of human motions, thereby enhancing the diversity and accuracy of the generated human motions. This stage is achieved by the designed deterministic feature mapping procedure with DerODE and stochastic diverse output generation procedure with DivSDE.DSDFM is easy to train compared to previous SGMs-based methods and can enhance diversity without introducing additional training parameters.Through qualitative and quantitative experiments, DSDFM achieves state-of-the-art results surpassing the latest methods, validating its superiority in human motion synthesis.
Abstract:Index structures are important for efficient data access, which have been widely used to improve the performance in many in-memory systems. Due to high in-memory overheads, traditional index structures become difficult to process the explosive growth of data, let alone providing low latency and high throughput performance with limited system resources. The promising learned indexes leverage deep-learning models to complement existing index structures and obtain significant memory savings. However, the learned indexes fail to become scalable due to the heavy inter-model dependency and expensive retraining. To address these problems, we propose a scalable learned index scheme to construct different linear regression models according to the data distribution. Moreover, the used models are independent so as to reduce the complexity of retraining and become easy to partition and store the data into different pages, blocks or distributed systems. Our experimental results show that compared with state-of-the-art schemes, AIDEL improves the insertion performance by about 2$\times$ and provides comparable lookup performance, while efficiently supporting scalability.