Abstract:Large Language Models are essential coding assistants, yet their training is predominantly English-centric. In this study, we evaluate the performance of code language models in non-English contexts, identifying challenges in their adoption and integration into multilingual workflows. We conduct an open-coding study to analyze errors in code comments generated by five state-of-the-art code models, CodeGemma, CodeLlama, CodeQwen1.5, GraniteCode, and StarCoder2 across five natural languages: Chinese, Dutch, English, Greek, and Polish. Our study yields a dataset of 12,500 labeled generations, which we publicly release. We then assess the reliability of standard metrics in capturing comment \textit{correctness} across languages and evaluate their trustworthiness as judgment criteria. Through our open-coding investigation, we identified a taxonomy of 26 distinct error categories in model-generated code comments. They highlight variations in language cohesion, informativeness, and syntax adherence across different natural languages. Our analysis shows that, while these models frequently produce partially correct comments, modern neural metrics fail to reliably differentiate meaningful completions from random noise. Notably, the significant score overlap between expert-rated correct and incorrect comments calls into question the effectiveness of these metrics in assessing generated comments.
Abstract:This paper reviews the NTIRE 2025 Challenge on Day and Night Raindrop Removal for Dual-Focused Images. This challenge received a wide range of impressive solutions, which are developed and evaluated using our collected real-world Raindrop Clarity dataset. Unlike existing deraining datasets, our Raindrop Clarity dataset is more diverse and challenging in degradation types and contents, which includes day raindrop-focused, day background-focused, night raindrop-focused, and night background-focused degradations. This dataset is divided into three subsets for competition: 14,139 images for training, 240 images for validation, and 731 images for testing. The primary objective of this challenge is to establish a new and powerful benchmark for the task of removing raindrops under varying lighting and focus conditions. There are a total of 361 participants in the competition, and 32 teams submitting valid solutions and fact sheets for the final testing phase. These submissions achieved state-of-the-art (SOTA) performance on the Raindrop Clarity dataset. The project can be found at https://lixinustc.github.io/CVPR-NTIRE2025-RainDrop-Competition.github.io/.