Abstract:Many social media news writers are not professionally trained. Therefore, social media platforms have to hire professional editors to adjust amateur headlines to attract more readers. We propose to automate this headline editing process through neural network models to provide more immediate writing support for these social media news writers. To train such a neural headline editing model, we collected a dataset which contains articles with original headlines and professionally edited headlines. However, it is expensive to collect a large number of professionally edited headlines. To solve this low-resource problem, we design an encoder-decoder model which leverages large scale pre-trained language models. We further improve the pre-trained model's quality by introducing a headline generation task as an intermediate task before the headline editing task. Also, we propose Self Importance-Aware (SIA) loss to address the different levels of editing in the dataset by down-weighting the importance of easily classified tokens and sentences. With the help of Pre-training, Adaptation, and SIA, the model learns to generate headlines in the professional editor's style. Experimental results show that our method significantly improves the quality of headline editing comparing against previous methods.
Abstract:In recent years, research on decoding brain activity based on functional magnetic resonance imaging (fMRI) has made remarkable achievements. However, constraint-free natural image reconstruction from brain activity is still a challenge. The existing methods simplified the problem by using semantic prior information or just reconstructing simple images such as letters and digitals. Without semantic prior information, we present a novel method to reconstruct nature images from fMRI signals of human visual cortex based on the computation model of convolutional neural network (CNN). Firstly, we extracted the units output of viewed natural images in each layer of a pre-trained CNN as CNN features. Secondly, we transformed image reconstruction from fMRI signals into the problem of CNN feature visualizations by training a sparse linear regression to map from the fMRI patterns to CNN features. By iteratively optimization to find the matched image, whose CNN unit features become most similar to those predicted from the brain activity, we finally achieved the promising results for the challenging constraint-free natural image reconstruction. As there was no use of semantic prior information of the stimuli when training decoding model, any category of images (not constraint by the training set) could be reconstructed theoretically. We found that the reconstructed images resembled the natural stimuli, especially in position and shape. The experimental results suggest that hierarchical visual features can effectively express the visual perception process of human brain.
Abstract:The task of event extraction has long been investigated in a supervised learning paradigm, which is bound by the number and the quality of the training instances. Existing training data must be manually generated through a combination of expert domain knowledge and extensive human involvement. However, due to drastic efforts required in annotating text, the resultant datasets are usually small, which severally affects the quality of the learned model, making it hard to generalize. Our work develops an automatic approach for generating training data for event extraction. Our approach allows us to scale up event extraction training instances from thousands to hundreds of thousands, and it does this at a much lower cost than a manual approach. We achieve this by employing distant supervision to automatically create event annotations from unlabelled text using existing structured knowledge bases or tables.We then develop a neural network model with post inference to transfer the knowledge extracted from structured knowledge bases to automatically annotate typed events with corresponding arguments in text.We evaluate our approach by using the knowledge extracted from Freebase to label texts from Wikipedia articles. Experimental results show that our approach can generate a large number of high quality training instances. We show that this large volume of training data not only leads to a better event extractor, but also allows us to detect multiple typed events.