Alert button
Picture for Yaser Sheikh

Yaser Sheikh

Alert button

RelightableHands: Efficient Neural Relighting of Articulated Hand Models

Feb 09, 2023
Shun Iwase, Shunsuke Saito, Tomas Simon, Stephen Lombardi, Timur Bagautdinov, Rohan Joshi, Fabian Prada, Takaaki Shiratori, Yaser Sheikh, Jason Saragih

Figure 1 for RelightableHands: Efficient Neural Relighting of Articulated Hand Models
Figure 2 for RelightableHands: Efficient Neural Relighting of Articulated Hand Models
Figure 3 for RelightableHands: Efficient Neural Relighting of Articulated Hand Models
Figure 4 for RelightableHands: Efficient Neural Relighting of Articulated Hand Models

We present the first neural relighting approach for rendering high-fidelity personalized hands that can be animated in real-time under novel illumination. Our approach adopts a teacher-student framework, where the teacher learns appearance under a single point light from images captured in a light-stage, allowing us to synthesize hands in arbitrary illuminations but with heavy compute. Using images rendered by the teacher model as training data, an efficient student model directly predicts appearance under natural illuminations in real-time. To achieve generalization, we condition the student model with physics-inspired illumination features such as visibility, diffuse shading, and specular reflections computed on a coarse proxy geometry, maintaining a small computational overhead. Our key insight is that these features have strong correlation with subsequent global light transport effects, which proves sufficient as conditioning data for the neural relighting network. Moreover, in contrast to bottleneck illumination conditioning, these features are spatially aligned based on underlying geometry, leading to better generalization to unseen illuminations and poses. In our experiments, we demonstrate the efficacy of our illumination feature representations, outperforming baseline approaches. We also show that our approach can photorealistically relight two interacting hands at real-time speeds. https://sh8.io/#/relightable_hands

* 8 pages, 16 figures, Website: https://sh8.io/#/relightable_hands 
Viaarxiv icon

Multiface: A Dataset for Neural Face Rendering

Jul 22, 2022
Cheng-hsin Wuu, Ningyuan Zheng, Scott Ardisson, Rohan Bali, Danielle Belko, Eric Brockmeyer, Lucas Evans, Timothy Godisart, Hyowon Ha, Alexander Hypes, Taylor Koska, Steven Krenn, Stephen Lombardi, Xiaomin Luo, Kevyn McPhail, Laura Millerschoen, Michal Perdoch, Mark Pitts, Alexander Richard, Jason Saragih, Junko Saragih, Takaaki Shiratori, Tomas Simon, Matt Stewart, Autumn Trimble, Xinshuo Weng, David Whitewolf, Chenglei Wu, Shoou-I Yu, Yaser Sheikh

Figure 1 for Multiface: A Dataset for Neural Face Rendering
Figure 2 for Multiface: A Dataset for Neural Face Rendering
Figure 3 for Multiface: A Dataset for Neural Face Rendering
Figure 4 for Multiface: A Dataset for Neural Face Rendering

Photorealistic avatars of human faces have come a long way in recent years, yet research along this area is limited by a lack of publicly available, high-quality datasets covering both, dense multi-view camera captures, and rich facial expressions of the captured subjects. In this work, we present Multiface, a new multi-view, high-resolution human face dataset collected from 13 identities at Reality Labs Research for neural face rendering. We introduce Mugsy, a large scale multi-camera apparatus to capture high-resolution synchronized videos of a facial performance. The goal of Multiface is to close the gap in accessibility to high quality data in the academic community and to enable research in VR telepresence. Along with the release of the dataset, we conduct ablation studies on the influence of different model architectures toward the model's interpolation capacity of novel viewpoint and expressions. With a conditional VAE model serving as our baseline, we found that adding spatial bias, texture warp field, and residual connections improves performance on novel view synthesis. Our code and data is available at: https://github.com/facebookresearch/multiface

Viaarxiv icon

Drivable Volumetric Avatars using Texel-Aligned Features

Jul 20, 2022
Edoardo Remelli, Timur Bagautdinov, Shunsuke Saito, Tomas Simon, Chenglei Wu, Shih-En Wei, Kaiwen Guo, Zhe Cao, Fabian Prada, Jason Saragih, Yaser Sheikh

Figure 1 for Drivable Volumetric Avatars using Texel-Aligned Features
Figure 2 for Drivable Volumetric Avatars using Texel-Aligned Features
Figure 3 for Drivable Volumetric Avatars using Texel-Aligned Features
Figure 4 for Drivable Volumetric Avatars using Texel-Aligned Features

Photorealistic telepresence requires both high-fidelity body modeling and faithful driving to enable dynamically synthesized appearance that is indistinguishable from reality. In this work, we propose an end-to-end framework that addresses two core challenges in modeling and driving full-body avatars of real people. One challenge is driving an avatar while staying faithful to details and dynamics that cannot be captured by a global low-dimensional parameterization such as body pose. Our approach supports driving of clothed avatars with wrinkles and motion that a real driving performer exhibits beyond the training corpus. Unlike existing global state representations or non-parametric screen-space approaches, we introduce texel-aligned features -- a localised representation which can leverage both the structural prior of a skeleton-based parametric model and observed sparse image signals at the same time. Another challenge is modeling a temporally coherent clothed avatar, which typically requires precise surface tracking. To circumvent this, we propose a novel volumetric avatar representation by extending mixtures of volumetric primitives to articulated objects. By explicitly incorporating articulation, our approach naturally generalizes to unseen poses. We also introduce a localized viewpoint conditioning, which leads to a large improvement in generalization of view-dependent appearance. The proposed volumetric representation does not require high-quality mesh tracking as a prerequisite and brings significant quality improvements compared to mesh-based counterparts. In our experiments, we carefully examine our design choices and demonstrate the efficacy of our approach, outperforming the state-of-the-art methods on challenging driving scenarios.

* SIGGRAPH 2022 Conference Proceedings  
Viaarxiv icon

Dressing Avatars: Deep Photorealistic Appearance for Physically Simulated Clothing

Jun 30, 2022
Donglai Xiang, Timur Bagautdinov, Tuur Stuyck, Fabian Prada, Javier Romero, Weipeng Xu, Shunsuke Saito, Jingfan Guo, Breannan Smith, Takaaki Shiratori, Yaser Sheikh, Jessica Hodgins, Chenglei Wu

Figure 1 for Dressing Avatars: Deep Photorealistic Appearance for Physically Simulated Clothing
Figure 2 for Dressing Avatars: Deep Photorealistic Appearance for Physically Simulated Clothing
Figure 3 for Dressing Avatars: Deep Photorealistic Appearance for Physically Simulated Clothing
Figure 4 for Dressing Avatars: Deep Photorealistic Appearance for Physically Simulated Clothing

Despite recent progress in developing animatable full-body avatars, realistic modeling of clothing - one of the core aspects of human self-expression - remains an open challenge. State-of-the-art physical simulation methods can generate realistically behaving clothing geometry at interactive rate. Modeling photorealistic appearance, however, usually requires physically-based rendering which is too expensive for interactive applications. On the other hand, data-driven deep appearance models are capable of efficiently producing realistic appearance, but struggle at synthesizing geometry of highly dynamic clothing and handling challenging body-clothing configurations. To this end, we introduce pose-driven avatars with explicit modeling of clothing that exhibit both realistic clothing dynamics and photorealistic appearance learned from real-world data. The key idea is to introduce a neural clothing appearance model that operates on top of explicit geometry: at train time we use high-fidelity tracking, whereas at animation time we rely on physically simulated geometry. Our key contribution is a physically-inspired appearance network, capable of generating photorealistic appearance with view-dependent and dynamic shadowing effects even for unseen body-clothing configurations. We conduct a thorough evaluation of our model and demonstrate diverse animation results on several subjects and different types of clothing. Unlike previous work on photorealistic full-body avatars, our approach can produce much richer dynamics and more realistic deformations even for loose clothing. We also demonstrate that our formulation naturally allows clothing to be used with avatars of different people while staying fully animatable, thus enabling, for the first time, photorealistic avatars with novel clothing.

* The supplementary video can be found on https://research.facebook.com/publications/dressing-avatars-deep-photorealistic-appearance-for-physically-simulated-clothing/ 
Viaarxiv icon

Garment Avatars: Realistic Cloth Driving using Pattern Registration

Jun 07, 2022
Oshri Halimi, Fabian Prada, Tuur Stuyck, Donglai Xiang, Timur Bagautdinov, He Wen, Ron Kimmel, Takaaki Shiratori, Chenglei Wu, Yaser Sheikh

Figure 1 for Garment Avatars: Realistic Cloth Driving using Pattern Registration
Figure 2 for Garment Avatars: Realistic Cloth Driving using Pattern Registration
Figure 3 for Garment Avatars: Realistic Cloth Driving using Pattern Registration
Figure 4 for Garment Avatars: Realistic Cloth Driving using Pattern Registration

Virtual telepresence is the future of online communication. Clothing is an essential part of a person's identity and self-expression. Yet, ground truth data of registered clothes is currently unavailable in the required resolution and accuracy for training telepresence models for realistic cloth animation. Here, we propose an end-to-end pipeline for building drivable representations for clothing. The core of our approach is a multi-view patterned cloth tracking algorithm capable of capturing deformations with high accuracy. We further rely on the high-quality data produced by our tracking method to build a Garment Avatar: an expressive and fully-drivable geometry model for a piece of clothing. The resulting model can be animated using a sparse set of views and produces highly realistic reconstructions which are faithful to the driving signals. We demonstrate the efficacy of our pipeline on a realistic virtual telepresence application, where a garment is being reconstructed from two views, and a user can pick and swap garment design as they wish. In addition, we show a challenging scenario when driven exclusively with body pose, our drivable garment avatar is capable of producing realistic cloth geometry of significantly higher quality than the state-of-the-art.

Viaarxiv icon

Driving-Signal Aware Full-Body Avatars

May 21, 2021
Timur Bagautdinov, Chenglei Wu, Tomas Simon, Fabian Prada, Takaaki Shiratori, Shih-En Wei, Weipeng Xu, Yaser Sheikh, Jason Saragih

Figure 1 for Driving-Signal Aware Full-Body Avatars
Figure 2 for Driving-Signal Aware Full-Body Avatars
Figure 3 for Driving-Signal Aware Full-Body Avatars
Figure 4 for Driving-Signal Aware Full-Body Avatars

We present a learning-based method for building driving-signal aware full-body avatars. Our model is a conditional variational autoencoder that can be animated with incomplete driving signals, such as human pose and facial keypoints, and produces a high-quality representation of human geometry and view-dependent appearance. The core intuition behind our method is that better drivability and generalization can be achieved by disentangling the driving signals and remaining generative factors, which are not available during animation. To this end, we explicitly account for information deficiency in the driving signal by introducing a latent space that exclusively captures the remaining information, thus enabling the imputation of the missing factors required during full-body animation, while remaining faithful to the driving signal. We also propose a learnable localized compression for the driving signal which promotes better generalization, and helps minimize the influence of global chance-correlations often found in real datasets. For a given driving signal, the resulting variational model produces a compact space of uncertainty for missing factors that allows for an imputation strategy best suited to a particular application. We demonstrate the efficacy of our approach on the challenging problem of full-body animation for virtual telepresence with driving signals acquired from minimal sensors placed in the environment and mounted on a VR-headset.

Viaarxiv icon

MeshTalk: 3D Face Animation from Speech using Cross-Modality Disentanglement

Apr 16, 2021
Alexander Richard, Michael Zollhoefer, Yandong Wen, Fernando de la Torre, Yaser Sheikh

Figure 1 for MeshTalk: 3D Face Animation from Speech using Cross-Modality Disentanglement
Figure 2 for MeshTalk: 3D Face Animation from Speech using Cross-Modality Disentanglement
Figure 3 for MeshTalk: 3D Face Animation from Speech using Cross-Modality Disentanglement
Figure 4 for MeshTalk: 3D Face Animation from Speech using Cross-Modality Disentanglement

This paper presents a generic method for generating full facial 3D animation from speech. Existing approaches to audio-driven facial animation exhibit uncanny or static upper face animation, fail to produce accurate and plausible co-articulation or rely on person-specific models that limit their scalability. To improve upon existing models, we propose a generic audio-driven facial animation approach that achieves highly realistic motion synthesis results for the entire face. At the core of our approach is a categorical latent space for facial animation that disentangles audio-correlated and audio-uncorrelated information based on a novel cross-modality loss. Our approach ensures highly accurate lip motion, while also synthesizing plausible animation of the parts of the face that are uncorrelated to the audio signal, such as eye blinks and eye brow motion. We demonstrate that our approach outperforms several baselines and obtains state-of-the-art quality both qualitatively and quantitatively. A perceptual user study demonstrates that our approach is deemed more realistic than the current state-of-the-art in over 75% of cases. We recommend watching the supplemental video before reading the paper: https://research.fb.com/wp-content/uploads/2021/04/mesh_talk.mp4

Viaarxiv icon

Pixel Codec Avatars

Apr 09, 2021
Shugao Ma, Tomas Simon, Jason Saragih, Dawei Wang, Yuecheng Li, Fernando De La Torre, Yaser Sheikh

Figure 1 for Pixel Codec Avatars
Figure 2 for Pixel Codec Avatars
Figure 3 for Pixel Codec Avatars
Figure 4 for Pixel Codec Avatars

Telecommunication with photorealistic avatars in virtual or augmented reality is a promising path for achieving authentic face-to-face communication in 3D over remote physical distances. In this work, we present the Pixel Codec Avatars (PiCA): a deep generative model of 3D human faces that achieves state of the art reconstruction performance while being computationally efficient and adaptive to the rendering conditions during execution. Our model combines two core ideas: (1) a fully convolutional architecture for decoding spatially varying features, and (2) a rendering-adaptive per-pixel decoder. Both techniques are integrated via a dense surface representation that is learned in a weakly-supervised manner from low-topology mesh tracking over training images. We demonstrate that PiCA improves reconstruction over existing techniques across testing expressions and views on persons of different gender and skin tone. Importantly, we show that the PiCA model is much smaller than the state-of-art baseline model, and makes multi-person telecommunicaiton possible: on a single Oculus Quest 2 mobile VR headset, 5 avatars are rendered in realtime in the same scene.

* CVPR 2021 Oral 
Viaarxiv icon

High-fidelity Face Tracking for AR/VR via Deep Lighting Adaptation

Mar 29, 2021
Lele Chen, Chen Cao, Fernando De la Torre, Jason Saragih, Chenliang Xu, Yaser Sheikh

Figure 1 for High-fidelity Face Tracking for AR/VR via Deep Lighting Adaptation
Figure 2 for High-fidelity Face Tracking for AR/VR via Deep Lighting Adaptation
Figure 3 for High-fidelity Face Tracking for AR/VR via Deep Lighting Adaptation
Figure 4 for High-fidelity Face Tracking for AR/VR via Deep Lighting Adaptation

3D video avatars can empower virtual communications by providing compression, privacy, entertainment, and a sense of presence in AR/VR. Best 3D photo-realistic AR/VR avatars driven by video, that can minimize uncanny effects, rely on person-specific models. However, existing person-specific photo-realistic 3D models are not robust to lighting, hence their results typically miss subtle facial behaviors and cause artifacts in the avatar. This is a major drawback for the scalability of these models in communication systems (e.g., Messenger, Skype, FaceTime) and AR/VR. This paper addresses previous limitations by learning a deep learning lighting model, that in combination with a high-quality 3D face tracking algorithm, provides a method for subtle and robust facial motion transfer from a regular video to a 3D photo-realistic avatar. Extensive experimental validation and comparisons to other state-of-the-art methods demonstrate the effectiveness of the proposed framework in real-world scenarios with variability in pose, expression, and illumination. Please visit https://www.youtube.com/watch?v=dtz1LgZR8cc for more results. Our project page can be found at https://www.cs.rochester.edu/u/lchen63.

* The paper is accepted to CVPR 2021 
Viaarxiv icon

Mixture of Volumetric Primitives for Efficient Neural Rendering

Mar 02, 2021
Stephen Lombardi, Tomas Simon, Gabriel Schwartz, Michael Zollhoefer, Yaser Sheikh, Jason Saragih

Figure 1 for Mixture of Volumetric Primitives for Efficient Neural Rendering
Figure 2 for Mixture of Volumetric Primitives for Efficient Neural Rendering
Figure 3 for Mixture of Volumetric Primitives for Efficient Neural Rendering
Figure 4 for Mixture of Volumetric Primitives for Efficient Neural Rendering

Real-time rendering and animation of humans is a core function in games, movies, and telepresence applications. Existing methods have a number of drawbacks we aim to address with our work. Triangle meshes have difficulty modeling thin structures like hair, volumetric representations like Neural Volumes are too low-resolution given a reasonable memory budget, and high-resolution implicit representations like Neural Radiance Fields are too slow for use in real-time applications. We present Mixture of Volumetric Primitives (MVP), a representation for rendering dynamic 3D content that combines the completeness of volumetric representations with the efficiency of primitive-based rendering, e.g., point-based or mesh-based methods. Our approach achieves this by leveraging spatially shared computation with a deconvolutional architecture and by minimizing computation in empty regions of space with volumetric primitives that can move to cover only occupied regions. Our parameterization supports the integration of correspondence and tracking constraints, while being robust to areas where classical tracking fails, such as around thin or translucent structures and areas with large topological variability. MVP is a hybrid that generalizes both volumetric and primitive-based representations. Through a series of extensive experiments we demonstrate that it inherits the strengths of each, while avoiding many of their limitations. We also compare our approach to several state-of-the-art methods and demonstrate that MVP produces superior results in terms of quality and runtime performance.

* 14 pages 
Viaarxiv icon