IEEE
Abstract:Explicit noise-level conditioning is widely regarded as essential for the effective operation of Graph Diffusion Models (GDMs). In this work, we challenge this assumption by investigating whether denoisers can implicitly infer noise levels directly from corrupted graph structures, potentially eliminating the need for explicit noise conditioning. To this end, we develop a theoretical framework centered on Bernoulli edge-flip corruptions and extend it to encompass more complex scenarios involving coupled structure-attribute noise. Extensive empirical evaluations on both synthetic and real-world graph datasets, using models such as GDSS and DiGress, provide strong support for our theoretical findings. Notably, unconditional GDMs achieve performance comparable or superior to their conditioned counterparts, while also offering reductions in parameters (4-6%) and computation time (8-10%). Our results suggest that the high-dimensional nature of graph data itself often encodes sufficient information for the denoising process, opening avenues for simpler, more efficient GDM architectures.
Abstract:Current text-driven image editing methods typically follow one of two directions: relying on large-scale, high-quality editing pair datasets to improve editing precision and diversity, or exploring alternative dataset-free techniques. However, constructing large-scale editing datasets requires carefully designed pipelines, is time-consuming, and often results in unrealistic samples or unwanted artifacts. Meanwhile, dataset-free methods may suffer from limited instruction comprehension and restricted editing capabilities. Faced with these challenges, the present work develops a novel paradigm for instruction-driven image editing that leverages widely available and enormous text-image pairs, instead of relying on editing pair datasets. Our approach introduces a multi-scale learnable region to localize and guide the editing process. By treating the alignment between images and their textual descriptions as supervision and learning to generate task-specific editing regions, our method achieves high-fidelity, precise, and instruction-consistent image editing. Extensive experiments demonstrate that the proposed approach attains state-of-the-art performance across various tasks and benchmarks, while exhibiting strong adaptability to various types of generative models.
Abstract:The growing enforcement of the right to be forgotten regulations has propelled recent advances in certified (graph) unlearning strategies to comply with data removal requests from deployed machine learning (ML) models. Motivated by the well-documented bias amplification predicament inherent to graph data, here we take a fresh look at graph unlearning and leverage it as a bias mitigation tool. Given a pre-trained graph ML model, we develop a training-free unlearning procedure that offers certifiable bias mitigation via a single-step Newton update on the model weights. This way, we contribute a computationally lightweight alternative to the prevalent training- and optimization-based fairness enhancement approaches, with quantifiable performance guarantees. We first develop a novel fairness-aware nodal feature unlearning strategy along with refined certified unlearning bounds for this setting, whose impact extends beyond the realm of graph unlearning. We then design structural unlearning methods endowed with principled selection mechanisms over nodes and edges informed by rigorous bias analyses. Unlearning these judiciously selected elements can mitigate algorithmic biases with minimal impact on downstream utility (e.g., node classification accuracy). Experimental results over real networks corroborate the bias mitigation efficacy of our unlearning strategies, and delineate markedly favorable utility-complexity trade-offs relative to retraining from scratch using augmented graph data obtained via removals.
Abstract:With the rise of machine learning techniques, ensuring the fairness of decisions made by machine learning algorithms has become of great importance in critical applications. However, measuring fairness often requires full access to the model parameters, which compromises the confidentiality of the models. In this paper, we propose a solution using zero-knowledge proofs, which allows the model owner to convince the public that a machine learning model is fair while preserving the secrecy of the model. To circumvent the efficiency barrier of naively proving machine learning inferences in zero-knowledge, our key innovation is a new approach to measure fairness only with model parameters and some aggregated information of the input, but not on any specific dataset. To achieve this goal, we derive new bounds for the fairness of logistic regression and deep neural network models that are tighter and better reflecting the fairness compared to prior work. Moreover, we develop efficient zero-knowledge proof protocols for common computations involved in measuring fairness, including the spectral norm of matrices, maximum, absolute value, and fixed-point arithmetic. We have fully implemented our system, FairZK, that proves machine learning fairness in zero-knowledge. Experimental results show that FairZK is significantly faster than the naive approach and an existing scheme that use zero-knowledge inferences as a subroutine. The prover time is improved by 3.1x--1789x depending on the size of the model and the dataset. FairZK can scale to a large model with 47 million parameters for the first time, and generates a proof for its fairness in 343 seconds. This is estimated to be 4 orders of magnitude faster than existing schemes, which only scale to small models with hundreds to thousands of parameters.
Abstract:With the rise of machine learning techniques, ensuring the fairness of decisions made by machine learning algorithms has become of great importance in critical applications. However, measuring fairness often requires full access to the model parameters, which compromises the confidentiality of the models. In this paper, we propose a solution using zero-knowledge proofs, which allows the model owner to convince the public that a machine learning model is fair while preserving the secrecy of the model. To circumvent the efficiency barrier of naively proving machine learning inferences in zero-knowledge, our key innovation is a new approach to measure fairness only with model parameters and some aggregated information of the input, but not on any specific dataset. To achieve this goal, we derive new bounds for the fairness of logistic regression and deep neural network models that are tighter and better reflecting the fairness compared to prior work. Moreover, we develop efficient zero-knowledge proof protocols for common computations involved in measuring fairness, including the spectral norm of matrices, maximum, absolute value, and fixed-point arithmetic. We have fully implemented our system, FairZK, that proves machine learning fairness in zero-knowledge. Experimental results show that FairZK is significantly faster than the naive approach and an existing scheme that use zero-knowledge inferences as a subroutine. The prover time is improved by 3.1x--1789x depending on the size of the model and the dataset. FairZK can scale to a large model with 47 million parameters for the first time, and generates a proof for its fairness in 343 seconds. This is estimated to be 4 orders of magnitude faster than existing schemes, which only scale to small models with hundreds to thousands of parameters.
Abstract:While deep generative models have significantly advanced representation learning, they may inherit or amplify biases and fairness issues by encoding sensitive attributes alongside predictive features. Enforcing strict independence in disentanglement is often unrealistic when target and sensitive factors are naturally correlated. To address this challenge, we propose CAD-VAE (Correlation-Aware Disentangled VAE), which introduces a correlated latent code to capture the shared information between target and sensitive attributes. Given this correlated latent, our method effectively separates overlapping factors without extra domain knowledge by directly minimizing the conditional mutual information between target and sensitive codes. A relevance-driven optimization strategy refines the correlated code by efficiently capturing essential correlated features and eliminating redundancy. Extensive experiments on benchmark datasets demonstrate that CAD-VAE produces fairer representations, realistic counterfactuals, and improved fairness-aware image editing.
Abstract:Finding specific preference-guided Pareto solutions that represent different trade-offs among multiple objectives is critical yet challenging in multi-objective problems. Existing methods are restrictive in preference definitions and/or their theoretical guarantees. In this work, we introduce a Flexible framEwork for pREfeRence-guided multi-Objective learning (FERERO) by casting it as a constrained vector optimization problem. Specifically, two types of preferences are incorporated into this formulation -- the relative preference defined by the partial ordering induced by a polyhedral cone, and the absolute preference defined by constraints that are linear functions of the objectives. To solve this problem, convergent algorithms are developed with both single-loop and stochastic variants. Notably, this is the first single-loop primal algorithm for constrained vector optimization to our knowledge. The proposed algorithms adaptively adjust to both constraint and objective values, eliminating the need to solve different subproblems at different stages of constraint satisfaction. Experiments on multiple benchmarks demonstrate the proposed method is very competitive in finding preference-guided optimal solutions. Code is available at https://github.com/lisha-chen/FERERO/.
Abstract:Graph federated learning is of essential importance for training over large graph datasets while protecting data privacy, where each client stores a subset of local graph data, while the server collects the local gradients and broadcasts only the aggregated gradients. Recent studies reveal that a malicious attacker can steal private image data from gradient exchanging of neural networks during federated learning. However, none of the existing works have studied the vulnerability of graph data and graph neural networks under such attack. To answer this question, the present paper studies the problem of whether private data can be recovered from leaked gradients in both node classification and graph classification tasks and { proposes a novel attack named Graph Leakage from Gradients (GLG)}. Two widely-used GNN frameworks are analyzed, namely GCN and GraphSAGE. The effects of different model settings on recovery are extensively discussed. Through theoretical analysis and empirical validation, it is shown that parts of the graph data can be leaked from the gradients.
Abstract:Conformal prediction is an uncertainty quantification method that constructs a prediction set for a previously unseen datum, ensuring the true label is included with a predetermined coverage probability. Adaptive conformal prediction has been developed to address data distribution shifts in dynamic environments. However, the efficiency of prediction sets varies depending on the learning model used. Employing a single fixed model may not consistently offer the best performance in dynamic environments with unknown data distribution shifts. To address this issue, we introduce a novel adaptive conformal prediction framework, where the model used for creating prediction sets is selected on the fly from multiple candidate models. The proposed algorithm is proven to achieve strongly adaptive regret over all intervals while maintaining valid coverage. Experiments on real and synthetic datasets corroborate that the proposed approach consistently yields more efficient prediction sets while maintaining valid coverage, outperforming alternative methods.
Abstract:Federated learning is renowned for its efficacy in distributed model training, ensuring that users, called clients, retain data privacy by not disclosing their data to the central server that orchestrates collaborations. Most previous work on federated learning assumes that clients possess static batches of training data. However, clients may also need to make real-time predictions on streaming data in non-stationary environments. In such dynamic environments, employing pre-trained models may be inefficient, as they struggle to adapt to the constantly evolving data streams. To address this challenge, clients can fine-tune models online, leveraging their observed data to enhance performance. Despite the potential benefits of client participation in federated online model fine-tuning, existing analyses have not conclusively demonstrated its superiority over local model fine-tuning. To bridge this gap, the present paper develops a novel personalized federated learning algorithm, wherein each client constructs a personalized model by combining a locally fine-tuned model with multiple federated models learned by the server over time. Theoretical analysis and experiments on real datasets corroborate the effectiveness of this approach for real-time predictions and federated model fine-tuning.