Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

Picture for Xuezhi Wang

Continual Learning for Text Classification with Information Disentanglement Based Regularization

Apr 12, 2021
Yufan Huang, Yanzhe Zhang, Jiaao Chen, Xuezhi Wang, Diyi Yang

* NAACL 2021 

  Access Paper or Ask Questions

Evaluating Fairness of Machine Learning Models Under Uncertain and Incomplete Information

Feb 16, 2021
Pranjal Awasthi, Alex Beutel, Matthaeus Kleindessner, Jamie Morgenstern, Xuezhi Wang

  Access Paper or Ask Questions

Measuring Recommender System Effects with Simulated Users

Jan 12, 2021
Sirui Yao, Yoni Halpern, Nithum Thain, Xuezhi Wang, Kang Lee, Flavien Prost, Ed H. Chi, Jilin Chen, Alex Beutel

* Presented at Second Workshop on Fairness, Accountability, Transparency, Ethics and Society on the Web (FATES 2020) with the title "Beyond Next Step Bias: Trajectory Simulation for Understanding Recommender System Behavior" 

  Access Paper or Ask Questions

Underspecification Presents Challenges for Credibility in Modern Machine Learning

Nov 06, 2020
Alexander D'Amour, Katherine Heller, Dan Moldovan, Ben Adlam, Babak Alipanahi, Alex Beutel, Christina Chen, Jonathan Deaton, Jacob Eisenstein, Matthew D. Hoffman, Farhad Hormozdiari, Neil Houlsby, Shaobo Hou, Ghassen Jerfel, Alan Karthikesalingam, Mario Lucic, Yian Ma, Cory McLean, Diana Mincu, Akinori Mitani, Andrea Montanari, Zachary Nado, Vivek Natarajan, Christopher Nielson, Thomas F. Osborne, Rajiv Raman, Kim Ramasamy, Rory Sayres, Jessica Schrouff, Martin Seneviratne, Shannon Sequeira, Harini Suresh, Victor Veitch, Max Vladymyrov, Xuezhi Wang, Kellie Webster, Steve Yadlowsky, Taedong Yun, Xiaohua Zhai, D. Sculley

  Access Paper or Ask Questions

Measuring and Reducing Gendered Correlations in Pre-trained Models

Oct 12, 2020
Kellie Webster, Xuezhi Wang, Ian Tenney, Alex Beutel, Emily Pitler, Ellie Pavlick, Jilin Chen, Slav Petrov

  Access Paper or Ask Questions

CAT-Gen: Improving Robustness in NLP Models via Controlled Adversarial Text Generation

Oct 05, 2020
Tianlu Wang, Xuezhi Wang, Yao Qin, Ben Packer, Kang Li, Jilin Chen, Alex Beutel, Ed Chi

* 6 pages, accepted to EMNLP 2020 

  Access Paper or Ask Questions

Improving Uncertainty Estimates through the Relationship with Adversarial Robustness

Jun 29, 2020
Yao Qin, Xuezhi Wang, Alex Beutel, Ed H. Chi

  Access Paper or Ask Questions

Fairness without Demographics through Adversarially Reweighted Learning

Jun 24, 2020
Preethi Lahoti, Alex Beutel, Jilin Chen, Kang Lee, Flavien Prost, Nithum Thain, Xuezhi Wang, Ed H. Chi

  Access Paper or Ask Questions

ToTTo: A Controlled Table-To-Text Generation Dataset

Apr 30, 2020
Ankur P. Parikh, Xuezhi Wang, Sebastian Gehrmann, Manaal Faruqui, Bhuwan Dhingra, Diyi Yang, Dipanjan Das

  Access Paper or Ask Questions

Practical Compositional Fairness: Understanding Fairness in Multi-Task ML Systems

Nov 06, 2019
Xuezhi Wang, Nithum Thain, Anu Sinha, Ed H. Chi, Jilin Chen, Alex Beutel

  Access Paper or Ask Questions

Transfer of Machine Learning Fairness across Domains

Jun 26, 2019
Candice Schumann, Xuezhi Wang, Alex Beutel, Jilin Chen, Hai Qian, Ed H. Chi

  Access Paper or Ask Questions

Statistical Properties of the Single Linkage Hierarchical Clustering Estimator

Sep 01, 2016
Dekang Zhu, Dan P. Guralnik, Xuezhi Wang, Xiang Li, Bill Moran

* 21 pages, 6 figures 

  Access Paper or Ask Questions

Maximum Likelihood Estimation for Single Linkage Hierarchical Clustering

Nov 25, 2015
Dekang Zhu, Dan P. Guralnik, Xuezhi Wang, Xiang Li, Bill Moran

* 15 pages, 6 figures 

  Access Paper or Ask Questions