Abstract:While Graph Contrastive Learning (GCL) has attracted considerable attention in the field of graph self-supervised learning, its performance heavily relies on data augmentations that are expected to generate semantically consistent positive pairs. Existing strategies typically resort to random perturbations or local structure preservation, yet lack explicit control over global structural consistency between augmented views. To address this limitation, we propose Fractal Graph Contrastive Learning (FractalGCL), a theory-driven framework that leverages fractal self-similarity to enforce global topological coherence. FractalGCL introduces two key innovations: a renormalisation-based augmentation that generates structurally aligned positive views via box coverings; and a fractal-dimension-aware contrastive loss that aligns graph embeddings according to their fractal dimensions. While combining the two innovations markedly boosts graph-representation quality, it also adds non-trivial computational overhead. To mitigate the computational overhead of fractal dimension estimation, we derive a one-shot estimator by proving that the dimension discrepancy between original and renormalised graphs converges weakly to a centred Gaussian distribution. This theoretical insight enables a reduction in dimension computation cost by an order of magnitude, cutting overall training time by approximately 61%. The experiments show that FractalGCL not only delivers state-of-the-art results on standard benchmarks but also outperforms traditional baselines on traffic networks by an average margin of about remarkably 7%. Codes are available at (https://anonymous.4open.science/r/FractalGCL-0511).
Abstract:Accurate and consistent evaluation is crucial for decision-making across numerous fields, yet it remains a challenging task due to inherent subjectivity, variability, and scale. Large Language Models (LLMs) have achieved remarkable success across diverse domains, leading to the emergence of "LLM-as-a-Judge," where LLMs are employed as evaluators for complex tasks. With their ability to process diverse data types and provide scalable, cost-effective, and consistent assessments, LLMs present a compelling alternative to traditional expert-driven evaluations. However, ensuring the reliability of LLM-as-a-Judge systems remains a significant challenge that requires careful design and standardization. This paper provides a comprehensive survey of LLM-as-a-Judge, addressing the core question: How can reliable LLM-as-a-Judge systems be built? We explore strategies to enhance reliability, including improving consistency, mitigating biases, and adapting to diverse assessment scenarios. Additionally, we propose methodologies for evaluating the reliability of LLM-as-a-Judge systems, supported by a novel benchmark designed for this purpose. To advance the development and real-world deployment of LLM-as-a-Judge systems, we also discussed practical applications, challenges, and future directions. This survey serves as a foundational reference for researchers and practitioners in this rapidly evolving field.
Abstract:Urban land use inference is a critically important task that aids in city planning and policy-making. Recently, the increased use of sensor and location technologies has facilitated the collection of multi-modal mobility data, offering valuable insights into daily activity patterns. Many studies have adopted advanced data-driven techniques to explore the potential of these multi-modal mobility data in land use inference. However, existing studies often process samples independently, ignoring the spatial correlations among neighbouring objects and heterogeneity among different services. Furthermore, the inherently low interpretability of complex deep learning methods poses a significant barrier in urban planning, where transparency and extrapolability are crucial for making long-term policy decisions. To overcome these challenges, we introduce an explainable framework for inferring land use that synergises heterogeneous graph neural networks (HGNs) with Explainable AI techniques, enhancing both accuracy and explainability. The empirical experiments demonstrate that the proposed HGNs significantly outperform baseline graph neural networks for all six land-use indicators, especially in terms of 'office' and 'sustenance'. As explanations, we consider feature attribution and counterfactual explanations. The analysis of feature attribution explanations shows that the symmetrical nature of the `residence' and 'work' categories predicted by the framework aligns well with the commuter's 'work' and 'recreation' activities in London. The analysis of the counterfactual explanations reveals that variations in node features and types are primarily responsible for the differences observed between the predicted land use distribution and the ideal mixed state. These analyses demonstrate that the proposed HGNs can suitably support urban stakeholders in their urban planning and policy-making.
Abstract:Travel choice analysis is crucial for understanding individual travel behavior to develop appropriate transport policies and recommendation systems in Intelligent Transportation Systems (ITS). Despite extensive research, this domain faces two critical challenges: a) modeling with limited survey data, and b) simultaneously achieving high model explainability and accuracy. In this paper, we introduce a novel prompt-learning-based Large Language Model(LLM) framework that significantly improves prediction accuracy and provides explicit explanations for individual predictions. This framework involves three main steps: transforming input variables into textual form; building of demonstrations similar to the object, and applying these to a well-trained LLM. We tested the framework's efficacy using two widely used choice datasets: London Passenger Mode Choice (LPMC) and Optima-Mode collected in Switzerland. The results indicate that the LLM significantly outperforms state-of-the-art deep learning methods and discrete choice models in predicting people's choices. Additionally, we present a case of explanation illustrating how the LLM framework generates understandable and explicit explanations at the individual level.