Department of Electrical and Electronic Engineering, Imperial College London, UK, Institute of Biomedical Engineering, University of Oxford, UK
Abstract:Chagas disease affects nearly 6 million people worldwide, with Chagas cardiomyopathy representing its most severe complication. In regions where serological testing capacity is limited, AI-enhanced electrocardiogram (ECG) screening provides a critical diagnostic alternative. However, existing machine learning approaches face challenges such as limited accuracy, reliance on large labeled datasets, and more importantly, weak integration with evidence-based clinical diagnostic indicators. We propose a retrieval-augmented generation framework, CardioRAG, integrating large language models with interpretable ECG-based clinical features, including right bundle branch block, left anterior fascicular block, and heart rate variability metrics. The framework uses variational autoencoder-learned representations for semantic case retrieval, providing contextual cases to guide clinical reasoning. Evaluation demonstrated high recall performance of 89.80%, with a maximum F1 score of 0.68 for effective identification of positive cases requiring prioritized serological testing. CardioRAG provides an interpretable, clinical evidence-based approach particularly valuable for resource-limited settings, demonstrating a pathway for embedding clinical indicators into trustworthy medical AI systems.
Abstract:Chronic obesity management requires continuous monitoring of energy balance behaviors, yet traditional self-reported methods suffer from significant underreporting and recall bias, and difficulty in integration with modern digital health systems. This study presents COBRA (Chronic Obesity Behavioral Recognition Architecture), a novel deep learning framework for objective behavioral monitoring using wrist-worn multimodal sensors. COBRA integrates a hybrid D-Net architecture combining U-Net spatial modeling, multi-head self-attention mechanisms, and BiLSTM temporal processing to classify daily activities into four obesity-relevant categories: Food Intake, Physical Activity, Sedentary Behavior, and Daily Living. Validated on the WISDM-Smart dataset with 51 subjects performing 18 activities, COBRA's optimal preprocessing strategy combines spectral-temporal feature extraction, achieving high performance across multiple architectures. D-Net demonstrates 96.86% overall accuracy with category-specific F1-scores of 98.55% (Physical Activity), 95.53% (Food Intake), 94.63% (Sedentary Behavior), and 98.68% (Daily Living), outperforming state-of-the-art baselines by 1.18% in accuracy. The framework shows robust generalizability with low demographic variance (<3%), enabling scalable deployment for personalized obesity interventions and continuous lifestyle monitoring.
Abstract:Tactile sensing is critical in advanced interactive systems by emulating the human sense of touch to detect stimuli. Vision-based tactile sensors (VBTSs) are promising for their ability to provide rich information, robustness, adaptability, low cost, and multimodal capabilities. However, current technologies still have limitations in sensitivity, spatial resolution, and the high computational demands of deep learning-based image processing. This paper presents a comprehensive approach combining a novel sensor structure with micromachined structures and an efficient image processing method, and demonstrates that carefully engineered microstructures within the sensor hardware can significantly enhance sensitivity while reducing computational load. Unlike traditional designs with tracking markers, our sensor incorporates an interface surface with micromachined trenches, as an example of microstructures, which modulate light transmission and amplify the variation in response to applied force. By capturing variations in brightness, wire width, and cross pattern locations with a camera, the sensor accurately infers the contact location, the magnitude of displacement and applied force with a lightweight convolutional neural network (CNN). Theoretical and experimental results demonstrated that the microstructures significantly enhance sensitivity by amplifying the visual effects of shape distortion. The sensor system effectively detected forces below 10 mN, and achieved a millimetre-level single-point spatial resolution. Using a model with only one convolutional layer, a mean absolute error (MAE) below 0.05 mm have been achieved. Its soft sensor body ensures compatibility with soft robots and wearable electronics, while its immunity to electrical crosstalk and interference guarantees reliability in complex human-machine environments.