Abstract:Lunar surface operations impose stringent requirements on wireless communication systems, including autonomy, robustness to disruption, and the ability to adapt to environmental and mission-driven context. While Space-O-RAN provides a distributed orchestration model aligned with 3GPP standards, its decision logic is limited to static policies and lacks semantic integration. We propose a novel extension incorporating a semantic agentic layer enabled by the Model Context Protocol (MCP) and Agent-to-Agent (A2A) communication protocols, allowing context-aware decision making across real-time, near-real-time, and non-real-time control layers. Distributed cognitive agents deployed in rovers, landers, and lunar base stations implement wireless-aware coordination strategies, including delay-adaptive reasoning and bandwidth-aware semantic compression, while interacting with multiple MCP servers to reason over telemetry, locomotion planning, and mission constraints.
Abstract:Non-terrestrial networks (NTNs) are essential for ubiquitous connectivity, providing coverage in remote and underserved areas. However, since NTNs are currently operated independently, they face challenges such as isolation, limited scalability, and high operational costs. Integrating satellite constellations with terrestrial networks offers a way to address these limitations while enabling adaptive and cost-efficient connectivity through the application of Artificial Intelligence (AI) models. This paper introduces Space-O-RAN, a framework that extends Open Radio Access Network (RAN) principles to NTNs. It employs hierarchical closed-loop control with distributed Space RAN Intelligent Controllers (Space-RICs) to dynamically manage and optimize operations across both domains. To enable adaptive resource allocation and network orchestration, the proposed architecture integrates real-time satellite optimization and control with AI-driven management and digital twin (DT) modeling. It incorporates distributed Space Applications (sApps) and dApps to ensure robust performance in in highly dynamic orbital environments. A core feature is dynamic link-interface mapping, which allows network functions to adapt to specific application requirements and changing link conditions using all physical links on the satellite. Simulation results evaluate its feasibility by analyzing latency constraints across different NTN link types, demonstrating that intra-cluster coordination operates within viable signaling delay bounds, while offloading non-real-time tasks to ground infrastructure enhances scalability toward sixth-generation (6G) networks.