Photovoltaic (PV) panel surface-defect detection technology is crucial for the PV industry to perform smart maintenance. Using computer vision technology to detect PV panel surface defects can ensure better accuracy while reducing the workload of traditional worker field inspections. However, multiple tiny defects on the PV panel surface and the high similarity between different defects make it challenging to {accurately identify and detect such defects}. This paper proposes an approach named Ghost convolution with BottleneckCSP and a tiny target prediction head incorporating YOLOv5 (GBH-YOLOv5) for PV panel defect detection. To ensure better accuracy on multiscale targets, the BottleneckCSP module is introduced to add a prediction head for tiny target detection to alleviate tiny defect misses, using Ghost convolution to improve the model inference speed and reduce the number of parameters. First, the original image is compressed and cropped to enlarge the defect size physically. Then, the processed images are input into GBH-YOLOv5, and the depth features are extracted through network processing based on Ghost convolution, the application of the BottleneckCSP module, and the prediction head of tiny targets. Finally, the extracted features are classified by a Feature Pyramid Network (FPN) and a Path Aggregation Network (PAN) structure. Meanwhile, we compare our method with state-of-the-art methods to verify the effectiveness of the proposed method. The proposed PV panel surface-defect detection network improves the mAP performance by at least 27.8%.
Since the traffic administration at road intersections determines the capacity bottleneck of modern transportation systems, intelligent cooperative coordination for connected autonomous vehicles (CAVs) has shown to be an effective solution. In this paper, we try to formulate a Bi-Level CAV intersection coordination framework, where coordinators from High and Low levels are tightly coupled. In the High-Level coordinator where vehicles from multiple roads are involved, we take various metrics including throughput, safety, fairness and comfort into consideration. Motivated by the time consuming space-time resource allocation framework in [1], we try to give a low complexity solution by transforming the complicated original problem into a sequential linear programming one. Based on the "feasible tunnels" (FT) generated from the High-Level coordinator, we then propose a rapid gradient-based trajectory optimization strategy in the Low-Level planner, to effectively avoid collisions beyond High-level considerations, such as the pedestrian or bicycles. Simulation results and laboratory experiments show that our proposed method outperforms existing strategies. Moreover, the most impressive advantage is that the proposed strategy can plan vehicle trajectory in milliseconds, which is promising in realworld deployments. A detailed description include the coordination framework and experiment demo could be found at the supplement materials, or online at https://youtu.be/MuhjhKfNIOg.
Previous works on emotion recognition in conversation (ERC) follow a two-step paradigm, which can be summarized as first producing context-independent features via fine-tuning pretrained language models (PLMs) and then analyzing contextual information and dialogue structure information among the extracted features. However, we discover that this paradigm has several limitations. Accordingly, we propose a novel paradigm, i.e., exploring contextual information and dialogue structure information in the fine-tuning step, and adapting the PLM to the ERC task in terms of input text, classification structure, and training strategy. Furthermore, we develop our model BERT-ERC according to the proposed paradigm, which improves ERC performance in three aspects, namely suggestive text, fine-grained classification module, and two-stage training. Compared to existing methods, BERT-ERC achieves substantial improvement on four datasets, indicating its effectiveness and generalization capability. Besides, we also set up the limited resources scenario and the online prediction scenario to approximate real-world scenarios. Extensive experiments demonstrate that the proposed paradigm significantly outperforms the previous one and can be adapted to various scenes.
Cooperative coordination at unsignalized road intersections, which aims to improve the driving safety and traffic throughput for connected and automated vehicles, has attracted increasing interests in recent years. However, most existing investigations either suffer from computational complexity or cannot harness the full potential of the road infrastructure. To this end, we first present a dedicated intersection coordination framework, where the involved vehicles hand over their control authorities and follow instructions from a centralized coordinator. Then a unified cooperative trajectory optimization problem will be formulated to maximize the traffic throughput while ensuring the driving safety and long-term stability of the coordination system. To address the key computational challenges in the real-world deployment, we reformulate this non-convex sequential decision problem into a model-free Markov Decision Process (MDP) and tackle it by devising a Twin Delayed Deep Deterministic Policy Gradient (TD3)-based strategy in the deep reinforcement learning (DRL) framework. Simulation and practical experiments show that the proposed strategy could achieve near-optimal performance in sub-static coordination scenarios and significantly improve the traffic throughput in the realistic continuous traffic flow. The most remarkable advantage is that our strategy could reduce the time complexity of computation to milliseconds, and is shown scalable when the road lanes increase.
A spatially fixed parameter of regularization item for whole images doesn't perform well both at edges and smooth areas. A large parameter of regularization item reduces noise better in smooth area but blurs edges, while a small parameter sharpens edges but causes residual noise. In this paper, an automated spatially dependent regularization parameter hybrid regularization model is proposed for reconstruction of noisy and blurred images which combines the harmonic and TV models. The algorithm detects image edges and spatially adjusts the parameters of Tikhonov and TV regularization terms for each pixel according to edge information. In addition, the edge information matrix will be dynamically updated with the iteration process. Computationally, the newly-established model is convex, then it can be solved by the semi-proximal alternating direction method of multipliers (sPADMM) with a linear-rate convergence. Numerical simulation results demonstrate that the proposed model effectively protects the image edge while eliminating noise and blur and outperforms the state-of-the-art algorithms in terms of PSNR, SSIM and visual quality.
The network information system is a military information network system with evolution characteristics. Evolution is a process of replacement between disorder and order, chaos and equilibrium. Given that the concept of evolution originates from biological systems, in this article, the evolution of network information architecture is analyzed by genetic algorithms, and the network information architecture is represented by chromosomes. Besides, the genetic algorithm is also applied to find the optimal chromosome in the architecture space. The evolutionary simulation is used to predict the optimal scheme of the network information architecture and provide a reference for system construction.