School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
Abstract:Editable 3D-aware generation, which supports user-interacted editing, has witnessed rapid development recently. However, existing editable 3D GANs either fail to achieve high-accuracy local editing or suffer from huge computational costs. We propose AttriHuman-3D, an editable 3D human generation model, which address the aforementioned problems with attribute decomposition and indexing. The core idea of the proposed model is to generate all attributes (e.g. human body, hair, clothes and so on) in an overall attribute space with six feature planes, which are then decomposed and manipulated with different attribute indexes. To precisely extract features of different attributes from the generated feature planes, we propose a novel attribute indexing method as well as an orthogonal projection regularization to enhance the disentanglement. We also introduce a hyper-latent training strategy and an attribute-specific sampling strategy to avoid style entanglement and misleading punishment from the discriminator. Our method allows users to interactively edit selected attributes in the generated 3D human avatars while keeping others fixed. Both qualitative and quantitative experiments demonstrate that our model provides a strong disentanglement between different attributes, allows fine-grained image editing and generates high-quality 3D human avatars.
Abstract:The rapid growth of Large Language Models (LLMs) has been a driving force in transforming various domains, reshaping the artificial general intelligence landscape. However, the increasing computational and memory demands of these models present substantial challenges, hindering both academic research and practical applications. To address these issues, a wide array of methods, including both algorithmic and hardware solutions, have been developed to enhance the efficiency of LLMs. This survey delivers a comprehensive review of algorithmic advancements aimed at improving LLM efficiency. Unlike other surveys that typically focus on specific areas such as training or model compression, this paper examines the multi-faceted dimensions of efficiency essential for the end-to-end algorithmic development of LLMs. Specifically, it covers various topics related to efficiency, including scaling laws, data utilization, architectural innovations, training and tuning strategies, and inference techniques. This paper aims to serve as a valuable resource for researchers and practitioners, laying the groundwork for future innovations in this critical research area. Our repository of relevant references is maintained at url{https://github.com/tding1/Efficient-LLM-Survey}.
Abstract:We present DREAM, a novel training framework representing Diffusion Rectification and Estimation-Adaptive Models, requiring minimal code changes (just three lines) yet significantly enhancing the alignment of training with sampling in diffusion models. DREAM features two components: diffusion rectification, which adjusts training to reflect the sampling process, and estimation adaptation, which balances perception against distortion. When applied to image super-resolution (SR), DREAM adeptly navigates the tradeoff between minimizing distortion and preserving high image quality. Experiments demonstrate DREAM's superiority over standard diffusion-based SR methods, showing a $2$ to $3\times $ faster training convergence and a $10$ to $20\times$ reduction in necessary sampling steps to achieve comparable or superior results. We hope DREAM will inspire a rethinking of diffusion model training paradigms.
Abstract:Generalizability and few-shot learning are key challenges in Neural Radiance Fields (NeRF), often due to the lack of a holistic understanding in pixel-level rendering. We introduce CaesarNeRF, an end-to-end approach that leverages scene-level CAlibratEd SemAntic Representation along with pixel-level representations to advance few-shot, generalizable neural rendering, facilitating a holistic understanding without compromising high-quality details. CaesarNeRF explicitly models pose differences of reference views to combine scene-level semantic representations, providing a calibrated holistic understanding. This calibration process aligns various viewpoints with precise location and is further enhanced by sequential refinement to capture varying details. Extensive experiments on public datasets, including LLFF, Shiny, mip-NeRF 360, and MVImgNet, show that CaesarNeRF delivers state-of-the-art performance across varying numbers of reference views, proving effective even with a single reference image. The project page of this work can be found at https://haidongz-usc.github.io/project/caesarnerf.
Abstract:Large Language Models (LLMs) have transformed the landscape of artificial intelligence, while their enormous size presents significant challenges in terms of computational costs. We introduce LoRAShear, a novel efficient approach to structurally prune LLMs and recover knowledge. Given general LLMs, LoRAShear at first creates the dependency graphs over LoRA modules to discover minimally removal structures and analyze the knowledge distribution. It then proceeds progressive structured pruning on LoRA adaptors and enables inherent knowledge transfer to better preserve the information in the redundant structures. To recover the lost knowledge during pruning, LoRAShear meticulously studies and proposes a dynamic fine-tuning schemes with dynamic data adaptors to effectively narrow down the performance gap to the full models. Numerical results demonstrate that by only using one GPU within a couple of GPU days, LoRAShear effectively reduced footprint of LLMs by 20% with only 1.0% performance degradation and significantly outperforms state-of-the-arts. The source code will be available at https://github.com/microsoft/lorashear.
Abstract:Fine-tuning large-scale pre-trained language models has been demonstrated effective for various natural language processing (NLP) tasks. Previous studies have established that incorporating adversarial training during the fine-tuning stage can significantly enhance model generalization and robustness. However, from the perspective of game theory, such utilizations of adversarial training correspond to pure-strategy games, which are inherently limited in terms of the scope of their strategies, thereby still having room for improvement. In order to push the performance boundaries, we propose a novel Mixed-strategy Adversarial Training algorithm (MAT). Methodologically, we derive the Nash equilibrium of a mixed-strategy game for adversarial training using Entropy Mirror Descent to establish MAT by sampling method. To verify the effectiveness of MAT, we conducted extensive benchmark experiments on large-scale pre-trained models, such as BERT and RoBERTa. MAT significantly outperforms the state-of-the-art methods on both the GLUE and ANLI benchmarks in terms of generalization and robustness.
Abstract:Bilevel optimization has recently regained interest owing to its applications in emerging machine learning fields such as hyperparameter optimization, meta-learning, and reinforcement learning. Recent results have shown that simple alternating (implicit) gradient-based algorithms can achieve the same convergence rate of single-level gradient descent (GD) for bilevel problems with a strongly convex lower-level objective. However, it remains unclear whether this result can be generalized to bilevel problems beyond this basic setting. In this paper, we propose a Generalized ALternating mEthod for bilevel opTimization (GALET) with a nonconvex lower-level objective that satisfies the Polyak-{\L}ojasiewicz (PL) condition. We first introduce a stationary metric for the considered bilevel problems, which generalizes the existing metric. We then establish that GALET achieves an $\epsilon$-stationary metric for the considered problem within $\tilde{\cal O}(\epsilon^{-1})$ iterations, which matches the iteration complexity of GD for smooth nonconvex problems.
Abstract:Multi-objective learning (MOL) problems often arise in emerging machine learning problems when there are multiple learning criteria or multiple learning tasks. Recent works have developed various dynamic weighting algorithms for MOL such as MGDA and its variants, where the central idea is to find an update direction that avoids conflicts among objectives. Albeit its appealing intuition, empirical studies show that dynamic weighting methods may not always outperform static ones. To understand this theory-practical gap, we focus on a new stochastic variant of MGDA - the Multi-objective gradient with Double sampling (MoDo) algorithm, and study the generalization performance of the dynamic weighting-based MoDo and its interplay with optimization through the lens of algorithm stability. Perhaps surprisingly, we find that the key rationale behind MGDA -- updating along conflict-avoidant direction - may hinder dynamic weighting algorithms from achieving the optimal ${\cal O}(1/\sqrt{n})$ population risk, where $n$ is the number of training samples. We further demonstrate the variability of dynamic weights on the three-way trade-off among optimization, generalization, and conflict avoidance that is unique in MOL.
Abstract:Existing neural architecture search (NAS) methods typically rely on pre-specified super deep neural networks (super-networks) with handcrafted search spaces beforehand. Such requirements make it challenging to extend them onto general scenarios without significant human expertise and manual intervention. To overcome the limitations, we propose the third generation of Only-Train-Once (OTOv3). OTOv3 is perhaps the first automated system that trains general super-networks and produces high-performing sub-networks in the one shot manner without pretraining and fine-tuning. Technologically, OTOv3 delivers three noticeable contributions to minimize human efforts: (i) automatic search space construction for general super-networks; (ii) a Hierarchical Half-Space Projected Gradient (H2SPG) that leverages the dependency graph to ensure the network validity during optimization and reliably produces a solution with both high performance and hierarchical group sparsity; and (iii) automatic sub-network construction based on the super-network and the H2SPG solution. Numerically, we demonstrate the effectiveness of OTOv3 on a variety of super-networks, including RegNet, StackedUnets, SuperResNet, and DARTS, over benchmark datasets such as CIFAR10, Fashion-MNIST, ImageNet, STL-10, and SVNH. The sub-networks computed by OTOv3 achieve competitive even superior performance compared to the super-networks and other state-of-the-arts. The library will be released at https://github.com/tianyic/only_train_once.
Abstract:In this paper, we focus on the challenges of modeling deformable 3D objects from casual videos. With the popularity of neural radiance fields (NeRF), many works extend it to dynamic scenes with a canonical NeRF and a deformation model that achieves 3D point transformation between the observation space and the canonical space. Recent works rely on linear blend skinning (LBS) to achieve the canonical-observation transformation. However, the linearly weighted combination of rigid transformation matrices is not guaranteed to be rigid. As a matter of fact, unexpected scale and shear factors often appear. In practice, using LBS as the deformation model can always lead to skin-collapsing artifacts for bending or twisting motions. To solve this problem, we propose neural dual quaternion blend skinning (NeuDBS) to achieve 3D point deformation, which can perform rigid transformation without skin-collapsing artifacts. Besides, we introduce a texture filtering approach for texture rendering that effectively minimizes the impact of noisy colors outside target deformable objects. Extensive experiments on real and synthetic datasets show that our approach can reconstruct 3D models for humans and animals with better qualitative and quantitative performance than state-of-the-art methods.