Abstract:Target domain pseudo-labelling has shown effectiveness in unsupervised domain adaptation (UDA). However, pseudo-labels of unlabeled target domain data are inevitably noisy due to the distribution shift between source and target domains. This paper proposes a Generative model-based Noise-Robust Training method (GeNRT), which eliminates domain shift while mitigating label noise. GeNRT incorporates a Distribution-based Class-wise Feature Augmentation (D-CFA) and a Generative-Discriminative classifier Consistency (GDC), both based on the class-wise target distributions modelled by generative models. D-CFA minimizes the domain gap by augmenting the source data with distribution-sampled target features, and trains a noise-robust discriminative classifier by using target domain knowledge from the generative models. GDC regards all the class-wise generative models as generative classifiers and enforces a consistency regularization between the generative and discriminative classifiers. It exploits an ensemble of target knowledge from all the generative models to train a noise-robust discriminative classifier and eventually gets theoretically linked to the Ben-David domain adaptation theorem for reducing the domain gap. Extensive experiments on Office-Home, PACS, and Digit-Five show that our GeNRT achieves comparable performance to state-of-the-art methods under single-source and multi-source UDA settings.
Abstract:In the fashion domain, there exists a variety of vision-and-language (V+L) tasks, including cross-modal retrieval, text-guided image retrieval, multi-modal classification, and image captioning. They differ drastically in each individual input/output format and dataset size. It has been common to design a task-specific model and fine-tune it independently from a pre-trained V+L model (e.g., CLIP). This results in parameter inefficiency and inability to exploit inter-task relatedness. To address such issues, we propose a novel FAshion-focused Multi-task Efficient learning method for Vision-and-Language tasks (FAME-ViL) in this work. Compared with existing approaches, FAME-ViL applies a single model for multiple heterogeneous fashion tasks, therefore being much more parameter-efficient. It is enabled by two novel components: (1) a task-versatile architecture with cross-attention adapters and task-specific adapters integrated into a unified V+L model, and (2) a stable and effective multi-task training strategy that supports learning from heterogeneous data and prevents negative transfer. Extensive experiments on four fashion tasks show that our FAME-ViL can save 61.5% of parameters over alternatives, while significantly outperforming the conventional independently trained single-task models. Code is available at https://github.com/BrandonHanx/FAME-ViL.
Abstract:As an essential technology underpinning trusted computing, the trusted execution environment (TEE) allows one to launch computation tasks on both on- and off-premises data while assuring confidentiality and integrity. This article provides a systematic review and comparison of TEE-based secure computation protocols. We first propose a taxonomy that classifies secure computation protocols into three major categories, namely secure outsourced computation, secure distributed computation and secure multi-party computation. To enable a fair comparison of these protocols, we also present comprehensive assessment criteria with respect to four aspects: setting, methodology, security and performance. Based on these criteria, we review, discuss and compare the state-of-the-art TEE-based secure computation protocols for both general-purpose computation functions and special-purpose ones, such as privacy-preserving machine learning and encrypted database queries. To the best of our knowledge, this article is the first survey to review TEE-based secure computation protocols and the comprehensive comparison can serve as a guideline for selecting suitable protocols for deployment in practice. Finally, we also discuss several future research directions and challenges.
Abstract:Existing unsupervised hashing methods typically adopt a feature similarity preservation paradigm. As a result, they overlook the intrinsic similarity capacity discrepancy between the continuous feature and discrete hash code spaces. Specifically, since the feature similarity distribution is intrinsically biased (e.g., moderately positive similarity scores on negative pairs), the hash code similarities of positive and negative pairs often become inseparable (i.e., the similarity collapse problem). To solve this problem, in this paper a novel Similarity Distribution Calibration (SDC) method is introduced. Instead of matching individual pairwise similarity scores, SDC aligns the hash code similarity distribution towards a calibration distribution (e.g., beta distribution) with sufficient spread across the entire similarity capacity/range, to alleviate the similarity collapse problem. Extensive experiments show that our SDC outperforms the state-of-the-art alternatives on both coarse category-level and instance-level image retrieval tasks, often by a large margin. Code is available at https://github.com/kamwoh/sdc.
Abstract:A long-standing topic in artificial intelligence is the effective recognition of patterns from noisy images. In this regard, the recent data-driven paradigm considers 1) improving the representation robustness by adding noisy samples in training phase (i.e., data augmentation) or 2) pre-processing the noisy image by learning to solve the inverse problem (i.e., image denoising). However, such methods generally exhibit inefficient process and unstable result, limiting their practical applications. In this paper, we explore a non-learning paradigm that aims to derive robust representation directly from noisy images, without the denoising as pre-processing. Here, the noise-robust representation is designed as Fractional-order Moments in Radon space (FMR), with also beneficial properties of orthogonality and rotation invariance. Unlike earlier integer-order methods, our work is a more generic design taking such classical methods as special cases, and the introduced fractional-order parameter offers time-frequency analysis capability that is not available in classical methods. Formally, both implicit and explicit paths for constructing the FMR are discussed in detail. Extensive simulation experiments and an image security application are provided to demonstrate the uniqueness and usefulness of our FMR, especially for noise robustness, rotation invariance, and time-frequency discriminability.
Abstract:Existing Temporal Action Detection (TAD) methods typically take a pre-processing step in converting an input varying-length video into a fixed-length snippet representation sequence, before temporal boundary estimation and action classification. This pre-processing step would temporally downsample the video, reducing the inference resolution and hampering the detection performance in the original temporal resolution. In essence, this is due to a temporal quantization error introduced during the resolution downsampling and recovery. This could negatively impact the TAD performance, but is largely ignored by existing methods. To address this problem, in this work we introduce a novel model-agnostic post-processing method without model redesign and retraining. Specifically, we model the start and end points of action instances with a Gaussian distribution for enabling temporal boundary inference at a sub-snippet level. We further introduce an efficient Taylor-expansion based approximation, dubbed as Gaussian Approximated Post-processing (GAP). Extensive experiments demonstrate that our GAP can consistently improve a wide variety of pre-trained off-the-shelf TAD models on the challenging ActivityNet (+0.2% -0.7% in average mAP) and THUMOS (+0.2% -0.5% in average mAP) benchmarks. Such performance gains are already significant and highly comparable to those achieved by novel model designs. Also, GAP can be integrated with model training for further performance gain. Importantly, GAP enables lower temporal resolutions for more efficient inference, facilitating low-resource applications. The code will be available in https://github.com/sauradip/GAP
Abstract:Few-shot (FS) and zero-shot (ZS) learning are two different approaches for scaling temporal action detection (TAD) to new classes. The former adapts a pretrained vision model to a new task represented by as few as a single video per class, whilst the latter requires no training examples by exploiting a semantic description of the new class. In this work, we introduce a new multi-modality few-shot (MMFS) TAD problem, which can be considered as a marriage of FS-TAD and ZS-TAD by leveraging few-shot support videos and new class names jointly. To tackle this problem, we further introduce a novel MUlti-modality PromPt mETa-learning (MUPPET) method. This is enabled by efficiently bridging pretrained vision and language models whilst maximally reusing already learned capacity. Concretely, we construct multi-modal prompts by mapping support videos into the textual token space of a vision-language model using a meta-learned adapter-equipped visual semantics tokenizer. To tackle large intra-class variation, we further design a query feature regulation scheme. Extensive experiments on ActivityNetv1.3 and THUMOS14 demonstrate that our MUPPET outperforms state-of-the-art alternative methods, often by a large margin. We also show that our MUPPET can be easily extended to tackle the few-shot object detection problem and again achieves the state-of-the-art performance on MS-COCO dataset. The code will be available in https://github.com/sauradip/MUPPET
Abstract:Multi-pose virtual try-on (MPVTON) aims to fit a target garment onto a person at a target pose. Compared to traditional virtual try-on (VTON) that fits the garment but keeps the pose unchanged, MPVTON provides a better try-on experience, but is also more challenging due to the dual garment and pose editing objectives. Existing MPVTON methods adopt a pipeline comprising three disjoint modules including a target semantic layout prediction module, a coarse try-on image generator and a refinement try-on image generator. These models are trained separately, leading to sub-optimal model training and unsatisfactory results. In this paper, we propose a novel single stage model for MPVTON. Key to our model is a parallel flow estimation module that predicts the flow fields for both person and garment images conditioned on the target pose. The predicted flows are subsequently used to warp the appearance feature maps of the person and the garment images to construct a style map. The map is then used to modulate the target pose's feature map for target try-on image generation. With the parallel flow estimation design, our model can be trained end-to-end in a single stage and is more computationally efficient, resulting in new SOTA performance on existing MPVTON benchmarks. We further introduce multi-task training and demonstrate that our model can also be applied for traditional VTON and pose transfer tasks and achieve comparable performance to SOTA specialized models on both tasks.
Abstract:This paper deals with the problem of localizing objects in image and video datasets from visual exemplars. In particular, we focus on the challenging problem of egocentric visual query localization. We first identify grave implicit biases in current query-conditioned model design and visual query datasets. Then, we directly tackle such biases at both frame and object set levels. Concretely, our method solves these issues by expanding limited annotations and dynamically dropping object proposals during training. Additionally, we propose a novel transformer-based module that allows for object-proposal set context to be considered while incorporating query information. We name our module Conditioned Contextual Transformer or CocoFormer. Our experiments show the proposed adaptations improve egocentric query detection, leading to a better visual query localization system in both 2D and 3D configurations. Thus, we are able to improve frame-level detection performance from 26.28% to 31.26 in AP, which correspondingly improves the VQ2D and VQ3D localization scores by significant margins. Our improved context-aware query object detector ranked first and second in the VQ2D and VQ3D tasks in the 2nd Ego4D challenge. In addition to this, we showcase the relevance of our proposed model in the Few-Shot Detection (FSD) task, where we also achieve SOTA results. Our code is available at https://github.com/facebookresearch/vq2d_cvpr.
Abstract:Multimodal tasks in the fashion domain have significant potential for e-commerce, but involve challenging vision-and-language learning problems - e.g., retrieving a fashion item given a reference image plus text feedback from a user. Prior works on multimodal fashion tasks have either been limited by the data in individual benchmarks, or have leveraged generic vision-and-language pre-training but have not taken advantage of the characteristics of fashion data. Additionally, these works have mainly been restricted to multimodal understanding tasks. To address these gaps, we make two key contributions. First, we propose a novel fashion-specific pre-training framework based on weakly-supervised triplets constructed from fashion image-text pairs. We show the triplet-based tasks are an effective addition to standard multimodal pre-training tasks. Second, we propose a flexible decoder-based model architecture capable of both fashion retrieval and captioning tasks. Together, our model design and pre-training approach are competitive on a diverse set of fashion tasks, including cross-modal retrieval, image retrieval with text feedback, image captioning, relative image captioning, and multimodal categorization.