Abstract:Accurate brain tumor segmentation from multi-modal magnetic resonance imaging (MRI) is a prerequisite for precise radiotherapy planning and surgical navigation. While recent Transformer-based models such as Swin UNETR have achieved impressive benchmark performance, their clinical utility is often compromised by two critical issues: sensitivity to missing modalities (common in clinical practice) and a lack of confidence calibration. Merely chasing higher Dice scores on idealized data fails to meet the safety requirements of real-world medical deployment. In this work, we propose BMDS-Net, a unified framework that prioritizes clinical robustness and trustworthiness over simple metric maximization. Our contribution is three-fold. First, we construct a robust deterministic backbone by integrating a Zero-Init Multimodal Contextual Fusion (MMCF) module and a Residual-Gated Deep Decoder Supervision (DDS) mechanism, enabling stable feature learning and precise boundary delineation with significantly reduced Hausdorff Distance, even under modality corruption. Second, and most importantly, we introduce a memory-efficient Bayesian fine-tuning strategy that transforms the network into a probabilistic predictor, providing voxel-wise uncertainty maps to highlight potential errors for clinicians. Third, comprehensive experiments on the BraTS 2021 dataset demonstrate that BMDS-Net not only maintains competitive accuracy but, more importantly, exhibits superior stability in missing-modality scenarios where baseline models fail. The source code is publicly available at https://github.com/RyanZhou168/BMDS-Net.
Abstract:Orthognathic surgery repositions jaw bones to restore occlusion and enhance facial aesthetics. Accurate simulation of postoperative facial morphology is essential for preoperative planning. However, traditional biomechanical models are computationally expensive, while geometric deep learning approaches often lack interpretability. In this study, we develop and validate a physics-informed geometric deep learning framework named PhysSFI-Net for precise prediction of soft tissue deformation following orthognathic surgery. PhysSFI-Net consists of three components: a hierarchical graph module with craniofacial and surgical plan encoders combined with attention mechanisms to extract skeletal-facial interaction features; a Long Short-Term Memory (LSTM)-based sequential predictor for incremental soft tissue deformation; and a biomechanics-inspired module for high-resolution facial surface reconstruction. Model performance was assessed using point cloud shape error (Hausdorff distance), surface deviation error, and landmark localization error (Euclidean distances of craniomaxillofacial landmarks) between predicted facial shapes and corresponding ground truths. A total of 135 patients who underwent combined orthodontic and orthognathic treatment were included for model training and validation. Quantitative analysis demonstrated that PhysSFI-Net achieved a point cloud shape error of 1.070 +/- 0.088 mm, a surface deviation error of 1.296 +/- 0.349 mm, and a landmark localization error of 2.445 +/- 1.326 mm. Comparative experiments indicated that PhysSFI-Net outperformed the state-of-the-art method ACMT-Net in prediction accuracy. In conclusion, PhysSFI-Net enables interpretable, high-resolution prediction of postoperative facial morphology with superior accuracy, showing strong potential for clinical application in orthognathic surgical planning and simulation.
Abstract:Colonoscopic Polyp Re-Identification aims to match the same polyp from a large gallery with images from different views taken using different cameras, which plays an important role in the prevention and treatment of colorectal cancer in computer-aided diagnosis. However, the coarse resolution of high-level features of a specific polyp often leads to inferior results for small objects where detailed information is important. To address this challenge, we propose a novel architecture, named Gated Progressive Fusion network, to selectively fuse features from multiple levels using gates in a fully connected way for polyp ReID. On the basis of it, a gated progressive fusion strategy is introduced to achieve layer-wise refinement of semantic information through multi-level feature interactions. Experiments on standard benchmarks show the benefits of the multimodal setting over state-of-the-art unimodal ReID models, especially when combined with the specialized multimodal fusion strategy.
Abstract:Colonoscopic polyp diagnosis is pivotal for early colorectal cancer detection, yet traditional automated reporting suffers from inconsistencies and hallucinations due to the scarcity of high-quality multimodal medical data. To bridge this gap, we propose LDP, a novel framework leveraging multimodal large language models (MLLMs) for professional polyp diagnosis report generation. Specifically, we curate MMEndo, a multimodal endoscopic dataset comprising expert-annotated colonoscopy image-text pairs. We fine-tune the Qwen2-VL-7B backbone using Parameter-Efficient Fine-Tuning (LoRA) and align it with clinical standards via Direct Preference Optimization (DPO). Extensive experiments show that our LDP outperforms existing baselines on both automated metrics and rigorous clinical expert evaluations (achieving a Physician Score of 7.2/10), significantly reducing training computational costs by 833x compared to full fine-tuning. The proposed solution offers a scalable, clinically viable path for primary healthcare, with additional validation on the IU-XRay dataset confirming its robustness.
Abstract:The Medical Information Mart for Intensive Care (MIMIC) datasets have become the Kernel of Digital Health Research by providing freely accessible, deidentified records from tens of thousands of critical care admissions, enabling a broad spectrum of applications in clinical decision support, outcome prediction, and healthcare analytics. Although numerous studies and surveys have explored the predictive power and clinical utility of MIMIC based models, critical challenges in data integration, representation, and interoperability remain underexplored. This paper presents a comprehensive survey that focuses uniquely on open problems. We identify persistent issues such as data granularity, cardinality limitations, heterogeneous coding schemes, and ethical constraints that hinder the generalizability and real-time implementation of machine learning models. We highlight key progress in dimensionality reduction, temporal modelling, causal inference, and privacy preserving analytics, while also outlining promising directions including hybrid modelling, federated learning, and standardized preprocessing pipelines. By critically examining these structural limitations and their implications, this survey offers actionable insights to guide the next generation of MIMIC powered digital health innovations.




Abstract:Parameter-efficient tuning (PET) techniques calibrate the model's predictions on downstream tasks by freezing the pre-trained models and introducing a small number of learnable parameters. However, despite the numerous PET methods proposed, their robustness has not been thoroughly investigated. In this paper, we systematically explore the robustness of four classical PET techniques (e.g., VPT, Adapter, AdaptFormer, and LoRA) under both white-box attacks and information perturbations. For white-box attack scenarios, we first analyze the performance of PET techniques using FGSM and PGD attacks. Subsequently, we further explore the transferability of adversarial samples and the impact of learnable parameter quantities on the robustness of PET methods. Under information perturbation attacks, we introduce four distinct perturbation strategies, including Patch-wise Drop, Pixel-wise Drop, Patch Shuffle, and Gaussian Noise, to comprehensively assess the robustness of these PET techniques in the presence of information loss. Via these extensive studies, we enhance the understanding of the robustness of PET methods, providing valuable insights for improving their performance in computer vision applications. The code is available at https://github.com/JCruan519/PETRobustness.
Abstract:Colonoscopic Polyp Re-Identification aims to match the same polyp from a large gallery with images from different views taken using different cameras and plays an important role in the prevention and treatment of colorectal cancer in computer-aided diagnosis. However, traditional methods for object ReID directly adopting CNN models trained on the ImageNet dataset usually produce unsatisfactory retrieval performance on colonoscopic datasets due to the large domain gap. Worsely, these solutions typically learn unimodal modal representations on the basis of visual samples, which fails to explore complementary information from different modalities. To address this challenge, we propose a novel Deep Multimodal Collaborative Learning framework named DMCL for polyp re-identification, which can effectively encourage modality collaboration and reinforce generalization capability in medical scenarios. On the basis of it, a dynamic multimodal feature fusion strategy is introduced to leverage the optimized multimodal representations for multimodal fusion via end-to-end training. Experiments on the standard benchmarks show the benefits of the multimodal setting over state-of-the-art unimodal ReID models, especially when combined with the specialized multimodal fusion strategy.
Abstract:Adapter-Tuning (AT) method involves freezing a pre-trained model and introducing trainable adapter modules to acquire downstream knowledge, thereby calibrating the model for better adaptation to downstream tasks. This paper proposes a distillation framework for the AT method instead of crafting a carefully designed adapter module, which aims to improve fine-tuning performance. For the first time, we explore the possibility of combining the AT method with knowledge distillation. Via statistical analysis, we observe significant differences in the knowledge acquisition between adapter modules of different models. Leveraging these differences, we propose a simple yet effective framework called inverse Distillation Adapter-Tuning (iDAT). Specifically, we designate the smaller model as the teacher and the larger model as the student. The two are jointly trained, and online knowledge distillation is applied to inject knowledge of different perspective to student model, and significantly enhance the fine-tuning performance on downstream tasks. Extensive experiments on the VTAB-1K benchmark with 19 image classification tasks demonstrate the effectiveness of iDAT. The results show that using existing AT method within our iDAT framework can further yield a 2.66% performance gain, with only an additional 0.07M trainable parameters. Our approach compares favorably with state-of-the-arts without bells and whistles. Our code is available at https://github.com/JCruan519/iDAT.
Abstract:In the realm of medical image segmentation, both CNN-based and Transformer-based models have been extensively explored. However, CNNs exhibit limitations in long-range modeling capabilities, whereas Transformers are hampered by their quadratic computational complexity. Recently, State Space Models (SSMs), exemplified by Mamba, have emerged as a promising approach. They not only excel in modeling long-range interactions but also maintain a linear computational complexity. In this paper, leveraging state space models, we propose a U-shape architecture model for medical image segmentation, named Vision Mamba UNet (VM-UNet). Specifically, the Visual State Space (VSS) block is introduced as the foundation block to capture extensive contextual information, and an asymmetrical encoder-decoder structure is constructed. We conduct comprehensive experiments on the ISIC17, ISIC18, and Synapse datasets, and the results indicate that VM-UNet performs competitively in medical image segmentation tasks. To our best knowledge, this is the first medical image segmentation model constructed based on the pure SSM-based model. We aim to establish a baseline and provide valuable insights for the future development of more efficient and effective SSM-based segmentation systems. Our code is available at https://github.com/JCruan519/VM-UNet.




Abstract:Existing research on audio classification faces challenges in recognizing attributes of passive underwater vessel scenarios and lacks well-annotated datasets due to data privacy concerns. In this study, we introduce CLAPP (Contrastive Language-Audio Pre-training in Passive Underwater Vessel Classification), a novel model. Our aim is to train a neural network using a wide range of vessel audio and vessel state text pairs obtained from an oceanship dataset. CLAPP is capable of directly learning from raw vessel audio data and, when available, from carefully curated labels, enabling improved recognition of vessel attributes in passive underwater vessel scenarios. Model's zero-shot capability allows predicting the most relevant vessel state description for a given vessel audio, without directly optimizing for the task. Our approach aims to solve 2 challenges: vessel audio-text classification and passive underwater vessel audio attribute recognition. The proposed method achieves new state-of-the-art results on both Deepship and Shipsear public datasets, with a notable margin of about 7%-13% for accuracy compared to prior methods on zero-shot task.