Purdue University
Abstract:Flow-based text-to-image (T2I) models excel at prompt-driven image generation, but falter on Image Restoration (IR), often "drifting away" from being faithful to the measurement. Prior work mitigate this drift with data-specific flows or task-specific adapters that are computationally heavy and not scalable across tasks. This raises the question "Can't we efficiently manipulate the existing generative capabilities of a flow model?" To this end, we introduce FlowSteer (FS), an operator-aware conditioning scheme that injects measurement priors along the sampling path,coupling a frozed flow's implicit guidance with explicit measurement constraints. Across super-resolution, deblurring, denoising, and colorization, FS improves measurement consistency and identity preservation in a strictly zero-shot setting-no retrained models, no adapters. We show how the nature of flow models and their sensitivities to noise inform the design of such a scheduler. FlowSteer, although simple, achieves a higher fidelity of reconstructed images, while leveraging the rich generative priors of flow models.
Abstract:Metalenses offer a path toward creating ultra-thin optical systems, but they inherently suffer from severe, spatially varying optical aberrations, especially chromatic aberration, which makes image reconstruction a significant challenge. This paper presents a novel algorithmic solution to this problem, designed to reconstruct a sharp, full-color image from two inputs: a sharp, bandpass-filtered grayscale ``structure image'' and a heavily distorted ``color cue'' image, both captured by the metalens system. Our method utilizes a dual-branch diffusion model, built upon a pre-trained Stable Diffusion XL framework, to fuse information from the two inputs. We demonstrate through quantitative and qualitative comparisons that our approach significantly outperforms existing deblurring and pansharpening methods, effectively restoring high-frequency details while accurately colorizing the image.
Abstract:We present Quanta Diffusion (QuDi), a powerful generative video reconstruction method for single-photon imaging. QuDi is an algorithm supporting the latest Quanta Image Sensors (QIS) and Single Photon Avalanche Diodes (SPADs) for extremely low-light imaging conditions. Compared to existing methods, QuDi overcomes the difficulties of simultaneously managing the motion and the strong shot noise. The core innovation of QuDi is to inject a physics-based forward model into the diffusion algorithm, while keeping the motion estimation in the loop. QuDi demonstrates an average of 2.4 dB PSNR improvement over the best existing methods.
Abstract:Single-Photon Light Detection and Ranging (SP-LiDAR is emerging as a leading technology for long-range, high-precision 3D vision tasks. In SP-LiDAR, timestamps encode two complementary pieces of information: pulse travel time (depth) and the number of photons reflected by the object (reflectivity). Existing SP-LiDAR reconstruction methods typically recover depth and reflectivity separately or sequentially use one modality to estimate the other. Moreover, the conventional 3D histogram construction is effective mainly for slow-moving or stationary scenes. In dynamic scenes, however, it is more efficient and effective to directly process the timestamps. In this paper, we introduce an estimation method to simultaneously recover both depth and reflectivity in fast-moving scenes. We offer two contributions: (1) A theoretical analysis demonstrating the mutual correlation between depth and reflectivity and the conditions under which joint estimation becomes beneficial. (2) A novel reconstruction method, "SPLiDER", which exploits the shared information to enhance signal recovery. On both synthetic and real SP-LiDAR data, our method outperforms existing approaches, achieving superior joint reconstruction quality.




Abstract:We address the problem of whole-body person recognition in unconstrained environments. This problem arises in surveillance scenarios such as those in the IARPA Biometric Recognition and Identification at Altitude and Range (BRIAR) program, where biometric data is captured at long standoff distances, elevated viewing angles, and under adverse atmospheric conditions (e.g., turbulence and high wind velocity). To this end, we propose FarSight, a unified end-to-end system for person recognition that integrates complementary biometric cues across face, gait, and body shape modalities. FarSight incorporates novel algorithms across four core modules: multi-subject detection and tracking, recognition-aware video restoration, modality-specific biometric feature encoding, and quality-guided multi-modal fusion. These components are designed to work cohesively under degraded image conditions, large pose and scale variations, and cross-domain gaps. Extensive experiments on the BRIAR dataset, one of the most comprehensive benchmarks for long-range, multi-modal biometric recognition, demonstrate the effectiveness of FarSight. Compared to our preliminary system, this system achieves a 34.1% absolute gain in 1:1 verification accuracy (TAR@0.1% FAR), a 17.8% increase in closed-set identification (Rank-20), and a 34.3% reduction in open-set identification errors (FNIR@1% FPIR). Furthermore, FarSight was evaluated in the 2025 NIST RTE Face in Video Evaluation (FIVE), which conducts standardized face recognition testing on the BRIAR dataset. These results establish FarSight as a state-of-the-art solution for operational biometric recognition in challenging real-world conditions.
Abstract:Wavefront estimation is an essential component of adaptive optics where the goal is to recover the underlying phase from its Fourier magnitude. While this may sound identical to classical phase retrieval, wavefront estimation faces more strict requirements regarding uniqueness as adaptive optics systems need a unique phase to compensate for the distorted wavefront. Existing real-time wavefront estimation methodologies are dominated by sensing via specialized optical hardware due to their high speed, but they often have a low spatial resolution. A computational method that can perform both fast and accurate wavefront estimation with a single measurement can improve resolution and bring new applications such as real-time passive wavefront estimation, opening the door to a new generation of medical and defense applications. In this paper, we tackle the wavefront estimation problem by observing that the non-uniqueness is related to the geometry of the pupil shape. By analyzing the source of ambiguities and breaking the symmetry, we present a joint optics-algorithm approach by co-designing the shape of the pupil and the reconstruction neural network. Using our proposed lightweight neural network, we demonstrate wavefront estimation of a phase of size $128\times 128$ at $5,200$ frames per second on a CPU computer, achieving an average Strehl ratio up to $0.98$ in the noiseless case. We additionally test our method on real measurements using a spatial light modulator. Code is available at https://pages.github.itap.purdue.edu/StanleyChanGroup/wavefront-estimation/.
Abstract:Atmospheric turbulence is a major source of image degradation in long-range imaging systems. Although numerous deep learning-based turbulence mitigation (TM) methods have been proposed, many are slow, memory-hungry, and do not generalize well. In the spatial domain, methods based on convolutional operators have a limited receptive field, so they cannot handle a large spatial dependency required by turbulence. In the temporal domain, methods relying on self-attention can, in theory, leverage the lucky effects of turbulence, but their quadratic complexity makes it difficult to scale to many frames. Traditional recurrent aggregation methods face parallelization challenges. In this paper, we present a new TM method based on two concepts: (1) A turbulence mitigation network based on the Selective State Space Model (MambaTM). MambaTM provides a global receptive field in each layer across spatial and temporal dimensions while maintaining linear computational complexity. (2) Learned Latent Phase Distortion (LPD). LPD guides the state space model. Unlike classical Zernike-based representations of phase distortion, the new LPD map uniquely captures the actual effects of turbulence, significantly improving the model's capability to estimate degradation by reducing the ill-posedness. Our proposed method exceeds current state-of-the-art networks on various synthetic and real-world TM benchmarks with significantly faster inference speed. The code is available at http://github.com/xg416/MambaTM.




Abstract:Since the seminal work of Andrey Kolmogorov in the early 1940's, imaging through atmospheric turbulence has grown from a pure scientific pursuit to an important subject across a multitude of civilian, space-mission, and national security applications. Fueled by the recent advancement of deep learning, the field is further experiencing a new wave of momentum. However, for these deep learning methods to perform well, new efforts are needed to build faster and more accurate computational models while at the same time maximizing the performance of image reconstruction. The book is written primarily for image processing engineers, computer vision scientists, and engineering students who are interested in the field of atmospheric turbulence, statistical optics, and image processing. The book can be used as a graduate text, or advanced topic classes for undergraduates.
Abstract:The proliferation of single-photon image sensors has opened the door to a plethora of high-speed and low-light imaging applications. However, data collected by these sensors are often 1-bit or few-bit, and corrupted by noise and strong motion. Conventional video restoration methods are not designed to handle this situation, while specialized quanta burst algorithms have limited performance when the number of input frames is low. In this paper, we introduce Quanta Video Restoration (QUIVER), an end-to-end trainable network built on the core ideas of classical quanta restoration methods, i.e., pre-filtering, flow estimation, fusion, and refinement. We also collect and publish I2-2000FPS, a high-speed video dataset with the highest temporal resolution of 2000 frames-per-second, for training and testing. On simulated and real data, QUIVER outperforms existing quanta restoration methods by a significant margin. Code and dataset available at https://github.com/chennuriprateek/Quanta_Video_Restoration-QUIVER-
Abstract:Depth estimation using a single-photon LiDAR is often solved by a matched filter. It is, however, error-prone in the presence of background noise. A commonly used technique to reject background noise is the rank-ordered mean (ROM) filter previously reported by Shin \textit{et al.} (2015). ROM rejects noisy photon arrival timestamps by selecting only a small range of them around the median statistics within its local neighborhood. Despite the promising performance of ROM, its theoretical performance limit is unknown. In this paper, we theoretically characterize the ROM performance by showing that ROM fails when the reflectivity drops below a threshold predetermined by the depth and signal-to-background ratio, and its accuracy undergoes a phase transition at the cutoff. Based on our theory, we propose an improved signal extraction technique by selecting tight timestamp clusters. Experimental results show that the proposed algorithm improves depth estimation performance over ROM by 3 orders of magnitude at the same signal intensities, and achieves high image fidelity at noise levels as high as 17 times that of signal.