Abstract:While fine-tuning pretrained models has become common practice, these models often underperform outside their specific domains. Recently developed model merging techniques enable the direct integration of multiple models, each fine-tuned for distinct tasks, into a single model. This strategy promotes multitasking capabilities without requiring retraining on the original datasets. However, existing methods fall short in addressing potential conflicts and complex correlations between tasks, especially in parameter-level adjustments, posing a challenge in effectively balancing parameter competition across various tasks. This paper introduces an innovative technique named PCB-Merging (Parameter Competition Balancing), a lightweight and training-free technique that adjusts the coefficients of each parameter for effective model merging. PCB-Merging employs intra-balancing to gauge parameter significance within individual tasks and inter-balancing to assess parameter similarities across different tasks. Parameters with low importance scores are dropped, and the remaining ones are rescaled to form the final merged model. We assessed our approach in diverse merging scenarios, including cross-task, cross-domain, and cross-training configurations, as well as out-of-domain generalization. The experimental results reveal that our approach achieves substantial performance enhancements across multiple modalities, domains, model sizes, number of tasks, fine-tuning forms, and large language models, outperforming existing model merging methods. The code is publicly available at: \url{https://github.com/duguodong7/pcb-merging}.
Abstract:Fine-tuning pre-trained language models, particularly large language models, demands extensive computing resources and can result in varying performance outcomes across different domains and datasets. This paper examines the approach of integrating multiple models from diverse training scenarios into a unified model. This unified model excels across various data domains and exhibits the ability to generalize well on out-of-domain data. We propose a knowledge fusion method named Evolver, inspired by evolutionary algorithms, which does not need further training or additional training data. Specifically, our method involves aggregating the weights of different language models into a population and subsequently generating offspring models through mutation and crossover operations. These offspring models are then evaluated against their parents, allowing for the preservation of those models that show enhanced performance on development datasets. Importantly, our model evolving strategy can be seamlessly integrated with existing model merging frameworks, offering a versatile tool for model enhancement. Experimental results on mainstream language models (i.e., encoder-only, decoder-only, encoder-decoder) reveal that Evolver outperforms previous state-of-the-art models by large margins. The code is publicly available at {https://github.com/duguodong7/model-evolution}.
Abstract:Spiking neural networks (SNNs) have gained prominence for their potential in neuromorphic computing and energy-efficient artificial intelligence, yet optimizing them remains a formidable challenge for gradient-based methods due to their discrete, spike-based computation. This paper attempts to tackle the challenges by introducing Cosine Annealing Differential Evolution (CADE), designed to modulate the mutation factor (F) and crossover rate (CR) of differential evolution (DE) for the SNN model, i.e., Spiking Element Wise (SEW) ResNet. Extensive empirical evaluations were conducted to analyze CADE. CADE showed a balance in exploring and exploiting the search space, resulting in accelerated convergence and improved accuracy compared to existing gradient-based and DE-based methods. Moreover, an initialization method based on a transfer learning setting was developed, pretraining on a source dataset (i.e., CIFAR-10) and fine-tuning the target dataset (i.e., CIFAR-100), to improve population diversity. It was found to further enhance CADE for SNN. Remarkably, CADE elevates the performance of the highest accuracy SEW model by an additional 0.52 percentage points, underscoring its effectiveness in fine-tuning and enhancing SNNs. These findings emphasize the pivotal role of a scheduler for F and CR adjustment, especially for DE-based SNN. Source Code on Github: https://github.com/Tank-Jiang/CADE4SNN.
Abstract:Hyperparameter tuning, particularly the selection of an appropriate learning rate in adaptive gradient training methods, remains a challenge. To tackle this challenge, in this paper, we propose a novel parameter-free optimizer, AdamG (Adam with the golden step size), designed to automatically adapt to diverse optimization problems without manual tuning. The core technique underlying AdamG is our golden step size derived for the AdaGrad-Norm algorithm, which is expected to help AdaGrad-Norm preserve the tuning-free convergence and approximate the optimal step size in expectation w.r.t. various optimization scenarios. To better evaluate tuning-free performance, we propose a novel evaluation criterion, stability, to comprehensively assess the efficacy of parameter-free optimizers in addition to classical performance criteria. Empirical results demonstrate that compared with other parameter-free baselines, AdamG achieves superior performance, which is consistently on par with Adam using a manually tuned learning rate across various optimization tasks.
Abstract:Training a high-performance deep neural network requires large amounts of data and computational resources. Protecting the intellectual property (IP) and commercial ownership of a deep model is challenging yet increasingly crucial. A major stream of watermarking strategies implants verifiable backdoor triggers by poisoning training samples, but these are often unrealistic due to data privacy and safety concerns and are vulnerable to minor model changes such as fine-tuning. To overcome these challenges, we propose a safe and robust backdoor-based watermark injection technique that leverages the diverse knowledge from a single out-of-distribution (OoD) image, which serves as a secret key for IP verification. The independence of training data makes it agnostic to third-party promises of IP security. We induce robustness via random perturbation of model parameters during watermark injection to defend against common watermark removal attacks, including fine-tuning, pruning, and model extraction. Our experimental results demonstrate that the proposed watermarking approach is not only time- and sample-efficient without training data, but also robust against the watermark removal attacks above.
Abstract:Data-free knowledge distillation (KD) helps transfer knowledge from a pre-trained model (known as the teacher model) to a smaller model (known as the student model) without access to the original training data used for training the teacher model. However, the security of the synthetic or out-of-distribution (OOD) data required in data-free KD is largely unknown and under-explored. In this work, we make the first effort to uncover the security risk of data-free KD w.r.t. untrusted pre-trained models. We then propose Anti-Backdoor Data-Free KD (ABD), the first plug-in defensive method for data-free KD methods to mitigate the chance of potential backdoors being transferred. We empirically evaluate the effectiveness of our proposed ABD in diminishing transferred backdoor knowledge while maintaining compatible downstream performances as the vanilla KD. We envision this work as a milestone for alarming and mitigating the potential backdoors in data-free KD. Codes are released at https://github.com/illidanlab/ABD.