Abstract:We introduce Step 3.5 Flash, a sparse Mixture-of-Experts (MoE) model that bridges frontier-level agentic intelligence and computational efficiency. We focus on what matters most when building agents: sharp reasoning and fast, reliable execution. Step 3.5 Flash pairs a 196B-parameter foundation with 11B active parameters for efficient inference. It is optimized with interleaved 3:1 sliding-window/full attention and Multi-Token Prediction (MTP-3) to reduce the latency and cost of multi-round agentic interactions. To reach frontier-level intelligence, we design a scalable reinforcement learning framework that combines verifiable signals with preference feedback, while remaining stable under large-scale off-policy training, enabling consistent self-improvement across mathematics, code, and tool use. Step 3.5 Flash demonstrates strong performance across agent, coding, and math tasks, achieving 85.4% on IMO-AnswerBench, 86.4% on LiveCodeBench-v6 (2024.08-2025.05), 88.2% on tau2-Bench, 69.0% on BrowseComp (with context management), and 51.0% on Terminal-Bench 2.0, comparable to frontier models such as GPT-5.2 xHigh and Gemini 3.0 Pro. By redefining the efficiency frontier, Step 3.5 Flash provides a high-density foundation for deploying sophisticated agents in real-world industrial environments.
Abstract:While effective post-training integrates Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL), the optimal mechanism for utilizing expert trajectories remains unresolved. We propose the Plasticity-Ceiling Framework to theoretically ground this landscape, decomposing performance into foundational SFT performance and the subsequent RL plasticity. Through extensive benchmarking, we establish the Sequential SFT-then-RL pipeline as the superior standard, overcoming the stability deficits of synchronized approaches. Furthermore, we derive precise scaling guidelines: (1) Transitioning to RL at the SFT Stable or Mild Overfitting Sub-phase maximizes the final ceiling by securing foundational SFT performance without compromising RL plasticity; (2) Refuting ``Less is More'' in the context of SFT-then-RL scaling, we demonstrate that Data Scale determines the primary post-training potential, while Trajectory Difficulty acts as a performance multiplier; and (3) Identifying that the Minimum SFT Validation Loss serves as a robust indicator for selecting the expert trajectories that maximize the final performance ceiling. Our findings provide actionable guidelines for maximizing the value extracted from expert trajectories.
Abstract:Reinforcement learning has recently shown promise in improving retrieval-augmented generation (RAG). Despite these advances, its effectiveness in multi-hop question answering (QA) remains limited by two fundamental limitations: (i) global planning absence to structure multi-step reasoning, and (ii) unfaithful execution, which hinders effective query formulation and consistent use of retrieved evidence. We propose GlobalRAG, a reinforcement learning framework designed to enhance global reasoning in multi-hop QA. GlobalRAG decomposes questions into subgoals, coordinates retrieval with reasoning, and refines evidence iteratively. To guide this process, we introduce Planning Quality Reward and SubGoal Completion Reward, which encourage coherent planning and reliable subgoal execution. In addition, a progressive weight annealing strategy balances process-oriented and outcome-based objectives. Extensive experiments on both in-domain and out-of-domain benchmarks demonstrate that GlobalRAG significantly outperforms strong baselines while using only 8k training data (42% of the training data used by strong baselines), achieving average improvements of 14.2% in both EM and F1.