Alert button
Picture for Shruthi Prabhakara

Shruthi Prabhakara

Alert button

Optimizing Audio Augmentations for Contrastive Learning of Health-Related Acoustic Signals

Sep 11, 2023
Louis Blankemeier, Sebastien Baur, Wei-Hung Weng, Jake Garrison, Yossi Matias, Shruthi Prabhakara, Diego Ardila, Zaid Nabulsi

Health-related acoustic signals, such as cough and breathing sounds, are relevant for medical diagnosis and continuous health monitoring. Most existing machine learning approaches for health acoustics are trained and evaluated on specific tasks, limiting their generalizability across various healthcare applications. In this paper, we leverage a self-supervised learning framework, SimCLR with a Slowfast NFNet backbone, for contrastive learning of health acoustics. A crucial aspect of optimizing Slowfast NFNet for this application lies in identifying effective audio augmentations. We conduct an in-depth analysis of various audio augmentation strategies and demonstrate that an appropriate augmentation strategy enhances the performance of the Slowfast NFNet audio encoder across a diverse set of health acoustic tasks. Our findings reveal that when augmentations are combined, they can produce synergistic effects that exceed the benefits seen when each is applied individually.

* 7 pages, 2 pages appendix, 2 figures, 5 appendix tables 
Viaarxiv icon

ELIXR: Towards a general purpose X-ray artificial intelligence system through alignment of large language models and radiology vision encoders

Aug 02, 2023
Shawn Xu, Lin Yang, Christopher Kelly, Marcin Sieniek, Timo Kohlberger, Martin Ma, Wei-Hung Weng, Attila Kiraly, Sahar Kazemzadeh, Zakkai Melamed, Jungyeon Park, Patricia Strachan, Yun Liu, Chuck Lau, Preeti Singh, Christina Chen, Mozziyar Etemadi, Sreenivasa Raju Kalidindi, Yossi Matias, Katherine Chou, Greg S. Corrado, Shravya Shetty, Daniel Tse, Shruthi Prabhakara, Daniel Golden, Rory Pilgrim, Krish Eswaran, Andrew Sellergren

Figure 1 for ELIXR: Towards a general purpose X-ray artificial intelligence system through alignment of large language models and radiology vision encoders
Figure 2 for ELIXR: Towards a general purpose X-ray artificial intelligence system through alignment of large language models and radiology vision encoders
Figure 3 for ELIXR: Towards a general purpose X-ray artificial intelligence system through alignment of large language models and radiology vision encoders
Figure 4 for ELIXR: Towards a general purpose X-ray artificial intelligence system through alignment of large language models and radiology vision encoders

Our approach, which we call Embeddings for Language/Image-aligned X-Rays, or ELIXR, leverages a language-aligned image encoder combined or grafted onto a fixed LLM, PaLM 2, to perform a broad range of tasks. We train this lightweight adapter architecture using images paired with corresponding free-text radiology reports from the MIMIC-CXR dataset. ELIXR achieved state-of-the-art performance on zero-shot chest X-ray (CXR) classification (mean AUC of 0.850 across 13 findings), data-efficient CXR classification (mean AUCs of 0.893 and 0.898 across five findings (atelectasis, cardiomegaly, consolidation, pleural effusion, and pulmonary edema) for 1% (~2,200 images) and 10% (~22,000 images) training data), and semantic search (0.76 normalized discounted cumulative gain (NDCG) across nineteen queries, including perfect retrieval on twelve of them). Compared to existing data-efficient methods including supervised contrastive learning (SupCon), ELIXR required two orders of magnitude less data to reach similar performance. ELIXR also showed promise on CXR vision-language tasks, demonstrating overall accuracies of 58.7% and 62.5% on visual question answering and report quality assurance tasks, respectively. These results suggest that ELIXR is a robust and versatile approach to CXR AI.

Viaarxiv icon

Predicting Cardiovascular Disease Risk using Photoplethysmography and Deep Learning

May 09, 2023
Wei-Hung Weng, Sebastien Baur, Mayank Daswani, Christina Chen, Lauren Harrell, Sujay Kakarmath, Mariam Jabara, Babak Behsaz, Cory Y. McLean, Yossi Matias, Greg S. Corrado, Shravya Shetty, Shruthi Prabhakara, Yun Liu, Goodarz Danaei, Diego Ardila

Figure 1 for Predicting Cardiovascular Disease Risk using Photoplethysmography and Deep Learning
Figure 2 for Predicting Cardiovascular Disease Risk using Photoplethysmography and Deep Learning
Figure 3 for Predicting Cardiovascular Disease Risk using Photoplethysmography and Deep Learning
Figure 4 for Predicting Cardiovascular Disease Risk using Photoplethysmography and Deep Learning

Cardiovascular diseases (CVDs) are responsible for a large proportion of premature deaths in low- and middle-income countries. Early CVD detection and intervention is critical in these populations, yet many existing CVD risk scores require a physical examination or lab measurements, which can be challenging in such health systems due to limited accessibility. Here we investigated the potential to use photoplethysmography (PPG), a sensing technology available on most smartphones that can potentially enable large-scale screening at low cost, for CVD risk prediction. We developed a deep learning PPG-based CVD risk score (DLS) to predict the probability of having major adverse cardiovascular events (MACE: non-fatal myocardial infarction, stroke, and cardiovascular death) within ten years, given only age, sex, smoking status and PPG as predictors. We compared the DLS with the office-based refit-WHO score, which adopts the shared predictors from WHO and Globorisk scores (age, sex, smoking status, height, weight and systolic blood pressure) but refitted on the UK Biobank (UKB) cohort. In UKB cohort, DLS's C-statistic (71.1%, 95% CI 69.9-72.4) was non-inferior to office-based refit-WHO score (70.9%, 95% CI 69.7-72.2; non-inferiority margin of 2.5%, p<0.01). The calibration of the DLS was satisfactory, with a 1.8% mean absolute calibration error. Adding DLS features to the office-based score increased the C-statistic by 1.0% (95% CI 0.6-1.4). DLS predicts ten-year MACE risk comparable with the office-based refit-WHO score. It provides a proof-of-concept and suggests the potential of a PPG-based approach strategies for community-based primary prevention in resource-limited regions.

* main: 24 pages (3 tables, 2 figures, 42 references), supplementary: 25 pages (9 tables, 4 figures, 11 references) 
Viaarxiv icon

Learning to Detect Touches on Cluttered Tables

Apr 10, 2023
Norberto Adrian Goussies, Kenji Hata, Shruthi Prabhakara, Abhishek Amit, Tony Aube, Carl Cepress, Diana Chang, Li-Te Cheng, Horia Stefan Ciurdar, Mike Cleron, Chelsey Fleming, Ashwin Ganti, Divyansh Garg, Niloofar Gheissari, Petra Luna Grutzik, David Hendon, Daniel Iglesia, Jin Kim, Stuart Kyle, Chris LaRosa, Roman Lewkow, Peter F McDermott, Chris Melancon, Paru Nackeeran, Neal Norwitz, Ali Rahimi, Brett Rampata, Carlos Sobrinho, George Sung, Natalie Zauhar, Palash Nandy

Figure 1 for Learning to Detect Touches on Cluttered Tables
Figure 2 for Learning to Detect Touches on Cluttered Tables
Figure 3 for Learning to Detect Touches on Cluttered Tables
Figure 4 for Learning to Detect Touches on Cluttered Tables

We present a novel self-contained camera-projector tabletop system with a lamp form-factor that brings digital intelligence to our tables. We propose a real-time, on-device, learning-based touch detection algorithm that makes any tabletop interactive. The top-down configuration and learning-based algorithm makes our method robust to the presence of clutter, a main limitation of existing camera-projector tabletop systems. Our research prototype enables a set of experiences that combine hand interactions and objects present on the table. A video can be found at https://youtu.be/hElC_c25Fg8.

Viaarxiv icon

Deep learning for detecting pulmonary tuberculosis via chest radiography: an international study across 10 countries

May 16, 2021
Sahar Kazemzadeh, Jin Yu, Shahar Jamshy, Rory Pilgrim, Zaid Nabulsi, Christina Chen, Neeral Beladia, Charles Lau, Scott Mayer McKinney, Thad Hughes, Atilla Kiraly, Sreenivasa Raju Kalidindi, Monde Muyoyeta, Jameson Malemela, Ting Shih, Greg S. Corrado, Lily Peng, Katherine Chou, Po-Hsuan Cameron Chen, Yun Liu, Krish Eswaran, Daniel Tse, Shravya Shetty, Shruthi Prabhakara

Figure 1 for Deep learning for detecting pulmonary tuberculosis via chest radiography: an international study across 10 countries
Figure 2 for Deep learning for detecting pulmonary tuberculosis via chest radiography: an international study across 10 countries
Figure 3 for Deep learning for detecting pulmonary tuberculosis via chest radiography: an international study across 10 countries
Figure 4 for Deep learning for detecting pulmonary tuberculosis via chest radiography: an international study across 10 countries

Tuberculosis (TB) is a top-10 cause of death worldwide. Though the WHO recommends chest radiographs (CXRs) for TB screening, the limited availability of CXR interpretation is a barrier. We trained a deep learning system (DLS) to detect active pulmonary TB using CXRs from 9 countries across Africa, Asia, and Europe, and utilized large-scale CXR pretraining, attention pooling, and noisy student semi-supervised learning. Evaluation was on (1) a combined test set spanning China, India, US, and Zambia, and (2) an independent mining population in South Africa. Given WHO targets of 90% sensitivity and 70% specificity, the DLS's operating point was prespecified to favor sensitivity over specificity. On the combined test set, the DLS's ROC curve was above all 9 India-based radiologists, with an AUC of 0.90 (95%CI 0.87-0.92). The DLS's sensitivity (88%) was higher than the India-based radiologists (75% mean sensitivity), p<0.001 for superiority; and its specificity (79%) was non-inferior to the radiologists (84% mean specificity), p=0.004. Similar trends were observed within HIV positive and sputum smear positive sub-groups, and in the South Africa test set. We found that 5 US-based radiologists (where TB isn't endemic) were more sensitive and less specific than the India-based radiologists (where TB is endemic). The DLS also remained non-inferior to the US-based radiologists. In simulations, using the DLS as a prioritization tool for confirmatory testing reduced the cost per positive case detected by 40-80% compared to using confirmatory testing alone. To conclude, our DLS generalized to 5 countries, and merits prospective evaluation to assist cost-effective screening efforts in radiologist-limited settings. Operating point flexibility may permit customization of the DLS to account for site-specific factors such as TB prevalence, demographics, clinical resources, and customary practice patterns.

Viaarxiv icon

Supervised Transfer Learning at Scale for Medical Imaging

Jan 21, 2021
Basil Mustafa, Aaron Loh, Jan Freyberg, Patricia MacWilliams, Megan Wilson, Scott Mayer McKinney, Marcin Sieniek, Jim Winkens, Yuan Liu, Peggy Bui, Shruthi Prabhakara, Umesh Telang, Alan Karthikesalingam, Neil Houlsby, Vivek Natarajan

Figure 1 for Supervised Transfer Learning at Scale for Medical Imaging
Figure 2 for Supervised Transfer Learning at Scale for Medical Imaging
Figure 3 for Supervised Transfer Learning at Scale for Medical Imaging
Figure 4 for Supervised Transfer Learning at Scale for Medical Imaging

Transfer learning is a standard technique to improve performance on tasks with limited data. However, for medical imaging, the value of transfer learning is less clear. This is likely due to the large domain mismatch between the usual natural-image pre-training (e.g. ImageNet) and medical images. However, recent advances in transfer learning have shown substantial improvements from scale. We investigate whether modern methods can change the fortune of transfer learning for medical imaging. For this, we study the class of large-scale pre-trained networks presented by Kolesnikov et al. on three diverse imaging tasks: chest radiography, mammography, and dermatology. We study both transfer performance and critical properties for the deployment in the medical domain, including: out-of-distribution generalization, data-efficiency, sub-group fairness, and uncertainty estimation. Interestingly, we find that for some of these properties transfer from natural to medical images is indeed extremely effective, but only when performed at sufficient scale.

Viaarxiv icon