Persistent monitoring of a spatiotemporal fluid process requires data sampling and predictive modeling of the process being monitored. In this paper we present PASST algorithm: Predictive-model based Adaptive Sampling of a Spatio-Temporal process. PASST is an adaptive robotic sampling algorithm that leverages predictive models to efficiently and persistently monitor a fluid process in a given region of interest. Our algorithm makes use of the predictions from a learned prediction model to plan a path for an autonomous vehicle to adaptively and efficiently survey the region of interest. In turn, the sampled data is used to obtain better predictions by giving an updated initial state to the predictive model. For predictive model, we use Knowledged-based Neural Ordinary Differential Equations to train models of fluid processes. These models are orders of magnitude smaller in size and run much faster than fluid data obtained from direct numerical simulations of the partial differential equations that describe the fluid processes or other comparable computational fluids models. For path planning, we use reinforcement learning based planning algorithms that use the field predictions as reward functions. We evaluate our adaptive sampling path planning algorithm on both numerically simulated fluid data and real-world nowcast ocean flow data to show that we can sample the spatiotemporal field in the given region of interest for long time horizons. We also evaluate PASST algorithm's generalization ability to sample from fluid processes that are not in the training repertoire of the learned models.
Active target sensing is the task of discovering and classifying an unknown number of targets in an environment and is critical in search-and-rescue missions. This paper develops a deep reinforcement learning approach to plan informative trajectories that increase the likelihood for an uncrewed aerial vehicle (UAV) to discover missing targets. Our approach efficiently (1) explores the environment to discover new targets, (2) exploits its current belief of the target states and incorporates inaccurate sensor models for high-fidelity classification, and (3) generates dynamically feasible trajectories for an agile UAV by employing a motion primitive library. Extensive simulations on randomly generated environments show that our approach is more efficient in discovering and classifying targets than several other baselines. A unique characteristic of our approach, in contrast to heuristic informative path planning approaches, is that it is robust to varying amounts of deviations of the prior belief from the true target distribution, thereby alleviating the challenge of designing heuristics specific to the application conditions.
In this paper, we present an online adaptive planning strategy for a team of robots with heterogeneous sensors to sample from a latent spatial field using a learned model for decision making. Current robotic sampling methods seek to gather information about an observable spatial field. However, many applications, such as environmental monitoring and precision agriculture, involve phenomena that are not directly observable or are costly to measure, called latent phenomena. In our approach, we seek to reason about the latent phenomenon in real-time by effectively sampling the observable spatial fields using a team of robots with heterogeneous sensors, where each robot has a distinct sensor to measure a different observable field. The information gain is estimated using a learned model that maps from the observable spatial fields to the latent phenomenon. This model captures aleatoric uncertainty in the relationship to allow for information theoretic measures. Additionally, we explicitly consider the correlations among the observable spatial fields, capturing the relationship between sensor types whose observations are not independent. We show it is possible to learn these correlations, and investigate the impact of the learned correlation models on the performance of our sampling approach. Through our qualitative and quantitative results, we illustrate that empirically learned correlations improve the overall sampling efficiency of the team. We simulate our approach using a data set of sensor measurements collected on Lac Hertel, in Quebec, which we make publicly available.
The multi-robot adaptive sampling problem aims at finding trajectories for a team of robots to efficiently sample the phenomenon of interest within a given endurance budget of the robots. In this paper, we propose a robust and scalable approach using decentralized Multi-Agent Reinforcement Learning for cooperated Adaptive Sampling (MARLAS) of quasi-static environmental processes. Given a prior on the field being sampled, the proposed method learns decentralized policies for a team of robots to sample high-utility regions within a fixed budget. The multi-robot adaptive sampling problem requires the robots to coordinate with each other to avoid overlapping sampling trajectories. Therefore, we encode the estimates of neighbor positions and intermittent communication between robots into the learning process. We evaluated MARLAS over multiple performance metrics and found it to outperform other baseline multi-robot sampling techniques. We further demonstrate robustness to communication failures and scalability with both the size of the robot team and the size of the region being sampled. The experimental evaluations are conducted both in simulations on real data and in real robot experiments on demo environmental setup.
This paper presents the portable autonomous probing system (APS), a low-cost robotic design for collecting water quality measurements at targeted depths from an autonomous surface vehicle (ASV). This system fills an important but often overlooked niche in marine sampling by enabling mobile sensor observations throughout the near-surface water column without the need for advanced underwater equipment. We present a probe delivery mechanism built with commercially available components and describe the corresponding open-source simulator and winch controller. Finally, we demonstrate the system in a field deployment and discuss design trade-offs and areas for future improvement. Project details are available on https://johannah.github.io/publication/sample-at-depth our website
This paper presents a distributed scalable multi-robot planning algorithm for non-uniform sampling of quasi-static spatial fields. We address the problem of efficient data collection using multiple autonomous vehicles. In this paper, we are interested in analyzing the effect of communication between multiple robots, acting independently, on the overall sampling performance of the team. Our focus is on distributed sampling problem where the robots are operating independent of their teammates, but have the ability to communicate their states to other neighbors with a constraint on the communication range. We design and apply an informed non-myopic path planning technique on multiple robotic platforms to efficiently collect measurements from a spatial field. Our proposed approach is highly adaptive to challenging environments, growing team size, and runs in real-time, which are the key features for any real-world scenario. The results show that our distributed sampling approach is able to achieve efficient sampling with minimal communication between the robots. We evaluate our approach in simulation over multiple distributions commonly occurring in nature and on the real-world data collected during a field trial.
In this paper we present a cooperative multi-robot strategy to adaptively explore and sample environments that are unfavorable for humans. We propose a methodology for a team of heterogeneous robots to collaborate on information based planning for applications like sampling thermal imagery in a wildfire affected site to assist with detecting spot fires and areas of residual fires, fire mapping and monitoring fire progression or applications in marine domain for coral reef monitoring and survey. We use Gabor filter based texture classifier on aerial images from an Unmanned Aerial Vehicle (UAV) to segment the region of interest into classes. A policy gradient based path planner is used on the texture classified aerial image to plan a path for the Unmanned Ground Vehicle (UGV). The UGV then uses a local planner to reach the goals set by the global planner by avoiding obstacles. The UGV also learns the labels for the segmented classes as drivable and non-drivable using the feedback from the performance while reaching the planned waypoints. We evaluated the building blocks of our approach and present the results with application of these strategies to different domains.
Efficient spatial exploration is a key aspect of search and rescue. In this paper, we present a search algorithm that generates efficient trajectories that optimize the rate at which probability mass is covered by a searcher. This should allow an autonomous vehicle find one or more lost targets as rapidly as possible. We do this by performing non-uniform sampling of the search region. The path generated minimizes the expected time to locate the missing target by visiting high probability regions using non-myopic path generation based on reinforcement learning. We model the target probability distribution using a classic mixture of Gaussians model with means and mixture coefficients tuned according to the location and time of sightings of the lost target. Key features of our search algorithm are the ability to employ a very general non-deterministic action model and the ability to generate action plans for any new probability distribution using the parameters learned on other similar looking distributions. One of the key contributions of this paper is the use of non-uniform state aggregation for policy search in the context of robotics.
We present a transportable system for ocean observations in which a small autonomous surface vehicle (ASV) adaptively collects spatially diverse samples with aid from a team of inexpensive, passive floating sensors known as drifters. Drifters can provide an increase in spatial coverage at little cost as they are propelled about the survey area by the ambient flow field instead of with actuators. Our iterative planning approach demonstrates how we can use the ASV to strategically deploy drifters into points of the flow field for high expected information gain, while also adaptively sampling the space. In this paper, we examine the performance of this heterogeneous sensing system in simulated flow field experiments.