Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

Bayesian Optimization over Discrete and Mixed Spaces via Probabilistic Reparameterization


Oct 18, 2022
Samuel Daulton, Xingchen Wan, David Eriksson, Maximilian Balandat, Michael A. Osborne, Eytan Bakshy

Add code

* To appear in Advances in Neural Information Processing Systems 35, 2022. Code available at: https://github.com/facebookresearch/bo_pr 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Log-Linear-Time Gaussian Processes Using Binary Tree Kernels


Oct 04, 2022
Michael K. Cohen, Samuel Daulton, Michael A. Osborne

Add code

* NeurIPS 2022; 9 pages + appendices 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Robust Multi-Objective Bayesian Optimization Under Input Noise


Feb 16, 2022
Samuel Daulton, Sait Cakmak, Maximilian Balandat, Michael A. Osborne, Enlu Zhou, Eytan Bakshy

Add code

* 41 pages. Code is available at https://github.com/facebookresearch/robust_mobo 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Multi-Objective Bayesian Optimization over High-Dimensional Search Spaces


Sep 22, 2021
Samuel Daulton, David Eriksson, Maximilian Balandat, Eytan Bakshy

Add code


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Latency-Aware Neural Architecture Search with Multi-Objective Bayesian Optimization


Jun 25, 2021
David Eriksson, Pierce I-Jen Chuang, Samuel Daulton, Peng Xia, Akshat Shrivastava, Arun Babu, Shicong Zhao, Ahmed Aly, Ganesh Venkatesh, Maximilian Balandat

Add code

* To Appear at the 8th ICML Workshop on Automated Machine Learning, ICML 2021 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Parallel Bayesian Optimization of Multiple Noisy Objectives with Expected Hypervolume Improvement


May 17, 2021
Samuel Daulton, Maximilian Balandat, Eytan Bakshy

Add code


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Distilled Thompson Sampling: Practical and Efficient Thompson Sampling via Imitation Learning


Dec 08, 2020
Hongseok Namkoong, Samuel Daulton, Eytan Bakshy

Add code

* Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2020 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Differentiable Expected Hypervolume Improvement for Parallel Multi-Objective Bayesian Optimization


Jun 11, 2020
Samuel Daulton, Maximilian Balandat, Eytan Bakshy

Add code


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email
1
2
>>